Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jiri Zemlicka is active.

Publication


Featured researches published by Jiri Zemlicka.


Antimicrobial Agents and Chemotherapy | 2005

In Vitro Activity and Mechanism of Action of Methylenecyclopropane Analogs of Nucleosides against Herpesvirus Replication

Earl R. Kern; Nicole L. Kushner; Caroll B. Hartline; Stephanie L. Williams-Aziz; Emma A. Harden; Shaoman Zhou; Jiri Zemlicka; Mark N. Prichard

ABSTRACT We have reported previously that methylenecyclopropane analogs of nucleosides have excellent activity against certain members of the herpesvirus family. A second generation, the 2,2-bis-hydroxymethyl derivatives, were synthesized, and 18 compounds were tested for activity in vitro against herpes simplex virus types 1 and 2 (HSV-1 and HSV-2), human and murine cytomegalovirus (HCMV and MCMV), varicella-zoster virus (VZV), and Epstein-Barr virus (EBV). Selected analogs were also evaluated against human herpesvirus type 6 (HHV-6) and HHV-8. None of the 18 compounds had activity against HSV-1 or HSV-2, but four were active against VZV by plaque reduction (PR) assay at 50% effective concentration (EC50) levels of ≤50 μM. Six of the 18 compounds were active against HCMV by cytopathic effect or PR assays with EC50s of 0.5 to 44 μM, and all were active against MCMV by PR (0.3 to 54 μM). Four of the compounds were active against EBV by enzyme-linked immunosorbent assay (<0.3 to 4.4 μM). Four compounds with CMV activity were also active against HHV-6A and HHV-6B (0.7 to 28 μM), and three compounds were active against HHV-8 (5.5 to 16 μM). One of these, ZSM-I-62, had particularly good activity against CMV, HHV-6, and HHV-8, with EC50s of 0.7 to 8 μM. Toxicity was evaluated in adherent and nonadherent cells, and minimal cytotoxicity was observed. Mechanism of action studies with HCMV suggested that these compounds are phosphorylated by the ppUL97 phosphotransferase and are potent inhibitors of viral DNA synthesis. These results indicate that at least one of these compounds may have potential for use in treating CMV and other herpesvirus infections in humans.


Antimicrobial Agents and Chemotherapy | 2004

Oral Activity of a Methylenecyclopropane Analog, Cyclopropavir, in Animal Models for Cytomegalovirus Infections

Earl R. Kern; Deborah J. Bidanset; Caroll B. Hartline; Zhaohua Yan; Jiri Zemlicka; Debra C. Quenelle

ABSTRACT We reported previously that purine 2-(hydroxymethyl)methylenecyclopropane analogs have good activity against cytomegalovirus infection. A second-generation analog, (Z)-9-{[2,2-bis-(hydroxymethyl)cyclopropylidene]methyl}guanine (ZSM-I-62, cyclopropavir [CPV]), has particularly good activity against murine and human cytomegaloviruses (MCMV and HCMV) in vitro. To determine the oral activity of this compound in vivo, BALB/c or severe combined immunodeficient (SCID) mice infected with MCMV and two models using SCID mice implanted with human fetal tissue and subsequently infected with HCMV were used. In MCMV-infected normal mice, CPV at 10 mg/kg of body weight was highly effective in preventing mortality when administered at 24, 48, or 72 h post-viral inoculation and reduced titers of virus in tissues of SCID mice by 2 to 5 log10. In one HCMV model, human fetal retinal tissue was implanted into the anterior chamber of the mouse eye and inoculated with the Toledo strain of HCMV, and in the second, human fetal thymus and liver tissues were implanted under the kidney capsule of mice and then inoculated with HCMV. In general, replication of HCMV in both types of implant tissue increased from 7 through 21 to 28 days and then gradually decreased to undetectable levels by 8 weeks postinfection. Oral treatment with 45 or 15 mg of CPV/kg initiated 24 h after infection was highly effective in reducing replication to undetectable levels in both models and was generally more effective than ganciclovir. These data indicate that the methylenecyclopropane analog, CPV, was highly efficacious in these four animal models and should be evaluated for use in HCMV infections in humans.


Biochimica et Biophysica Acta | 2002

Lipophilic phosphoramidates as antiviral pronucleotides

Jiri Zemlicka

In order to overcome restrictions imposed by activation (phosphorylation) mechanism of antiviral and antitumor nucleoside analogues several prodrug approaches have been designed. Lipophilic pronucleotides are capable of intracellular delivery of monophosphates of nucleoside analogues, thus circumventing the limitations of enzymic phosphorylation. One of the successful approaches employs lipophilic amino acid ester (alanine) phenyl phosphoramidates as pronucleotides. This approach was applied to AIDS drugs such as AZT, d4T and related analogues but also to nonclassical nucleoside analogues based on allenic and methylenecyclopropane structure. Antiviral effects of the parent analogues were in many cases increased by conversion to phenyl phosphoralaninate (PPA) pronucleotides. Although cytotoxicity increase frequently accompanies antiviral effects of these pronucleotides, a favorable selectivity index can be obtained by manipulation of the parent structure as shown, e.g., for 2,6-diaminopurine methylenecyclopropane pronucleotide 15c. A lack of in vivo toxicity was demonstrated for 2-amino-6-methoxypurine methylenecyclopropane pronucleotide 15e in mice. The PPA pronucleotides can overcome deficiency of phosphorylating enzymes and offer favorable cross-resistance patterns when compared with other antiviral drugs.


Antimicrobial Agents and Chemotherapy | 2000

In Vitro Activities of Methylenecyclopropane Analogues of Nucleosides and Their Phosphoralaninate Prodrugs against Cytomegalovirus and Other Herpesvirus Infections

Rachel J. Rybak; Caroll B. Hartline; Yao-Ling Qiu; Jiri Zemlicka; Emma A. Harden; Gwen Marshall; Jean-Pierre Sommadossi; Earl R. Kern

ABSTRACT Human cytomegalovirus (HCMV) infection does not generally cause problems in the immunocompetent adult but can result in severe clinical disease in the fetus, neonate, and immunocompromised host. Ganciclovir (GCV), the agent currently used to treat most HCMV infections, has resulted in much therapeutic success; however, efficacy remains suboptimal. Therefore, there is still a need to develop new compounds for use against HCMV infections. In the present study, severalZ- and E-series methylenecyclopropane analogues and their phosphoroalaninate prodrugs were tested initially for activity against HCMV, strain AD169, and murine cytomegalovirus (MCMV) in vitro. Many were found to exhibit efficacy comparable to that of GCV against HCMV in plaque assays and were active against MCMV as well. The compounds were also tested for efficacy against herpes simplex virus types 1 and 2, varicella-zoster virus, and Epstein-Barr virus, and some had levels of activity that were comparable to that of acyclovir. In addition, the compounds synguanol (QYL-438) and 2-amino-6-cyclopropylamino analogue (QYL-769) were chosen for further evaluation and were found to be effective against additional laboratory and clinical isolates of HCMV and GCV-resistant isolates. QYL-438 and QYL-769 were found to be nontoxic in human and mouse fibroblasts and were considerably less toxic than GCV in granulocyte macrophage CFUs and erythroid burst-forming units. These results provide evidence for the high activity of some of these methylenecyclopropane analogues against various herpesviruses, particularly HCMV, in tissue culture and suggest that further evaluation is warranted to determine their potential for use in future clinical studies.


Antiviral Research | 1999

Effective treatment of murine cytomegalovirus infections with methylenecyclopropane analogues of nucleosides.

Rachel J. Rybak; Jiri Zemlicka; Yao-Ling Qiu; Caroll B. Hartline; Earl R. Kern

A number of new nucleoside analogues with a Z- or E-methylenecyclopropane structure exhibited significant activity against human and murine cytomegaloviruses (HCMV, MCMV) in tissue culture that was generally comparable to, or greater than, 9-[(1-3-dihydroxy-2-propoxy)methyl]guanine (ganciclovir, GCV). Several of these analogues were chosen for further evaluation of therapeutic efficacy utilizing a MCMV infection. Intraperitoneal (i.p.) inoculation of 3-week-old Balb/c mice with 2.0 x 10(5) plaque forming units (pfu) of MCMV results in an acute, lethal infection with rapid virus replication in visceral and glandular tissue, thus, making it an ideal model for identifying compounds that have potential for use in humans. Synadenol (QYL-284A) and synguanol (QYL-438) were administered i.p. once daily for 5 days initiated 6, 24, or 48 h post-viral infection. Significant protection was demonstrated at 50 and 16.7 mg/kg compared to placebo, with efficacy comparable to GCV. When delivered orally once or twice daily at 100 mg/kg per day, QYL-438 was active, but less effective than GCV. In addition, 2-amino-6-methoxypurine analogue (QYL-941) was active at 60 mg/kg administered orally twice daily, comparable to GCV, while its prodrug (QYL-972) was as effective as GCV at 40 mg/kg when delivered twice daily for 5 days. Additionally, analogue 2-amino-6-cyclopropylaminopurine (QYL-769) was found to be highly efficacious when given orally twice daily for 5 days. Mortality of 0% and 13% was observed at 60 and 20 mg/kg, respectively, which was similar to GCV. Oral treatment with QYL-769 or GCV reduced virus replication in target organs, but neither resulted in complete clearance of MCMV. These data indicate that these new analogues have activity comparable to GCV when given orally to mice and should be evaluated further to assess their potential for use in humans.


Pharmacology & Therapeutics | 2000

Enantioselectivity of the antiviral effects of nucleoside analogues

Jiri Zemlicka

Natural D-nucleosides are no longer the sole basis for designing effective antiviral analogues. Many antivirals with an opposite (L) configuration were reported, with lamivudine being the most notable example. In contrast, carbocyclic nucleoside analogues are significantly more enantioselective, and enantiomers with a configuration corresponding to D-nucleosides are usually favored. In the series of acyclic nucleoside analogues, the antiviral potency resides in a single enantiomer. Allenic analogues with an axial dissymmetry are R-enantioselective, in contrast to structurally similar methylenecyclopropanes, where the enantioselectivity strongly depends on the type of virus. Enantioselectivity of acyclic nucleotide analogues exhibits a more complex pattern. The overall enantioselectivity of the antiviral effects is determined by responses of activating (phosphorylating) enzymes, as well as target DNA polymerases (reverse transcriptase), toward enantiomers of active analogues.


Antiviral Research | 1999

Synthesis and antiviral activity of phosphoralaninate derivatives of methylenecyclopropane analogues of nucleosides

Yao-Ling Qiu; Roger G. Ptak; Julie M. Breitenbach; Ju-Sheng Lin; Yung-Chi Cheng; John C. Drach; Earl R. Kern; Jiri Zemlicka

Phenylmethylphosphoro-L-alaninate prodrugs of antiviral Z-methylenecyclopropane nucleoside analogues and their inactive E-isomers were synthesized and evaluated for their antiviral activity against HCMV, HSV-1, HSV-2, HHV-6, EBV, VZV, HIV-1 and HBV. The adenine Z-analogue was a potent inhibitor of all these viruses but it displayed cellular toxicity. The guanine Z-derivative was active against HCMV, HBV, EBV and VZV and it was not cytotoxic. The 2,6-diaminopurine analogue was the most potent against HIV-1 and HBV and somewhat less against HHV-6, HCMV, EBV and VZV in a non-cytotoxic concentration range. The 2-amino-6-cyclopropylamino and 2-amino-6-methoxypurine prodrugs were also more active than parent analogues against several viruses but with a less favorable cytotoxicity profile. In the E-series of analogues, adenine derivative was active against HIV-1, HBV and EBV, and it was non-cytotoxic. The guanine analogue exhibited a significant effect only against HBV. The 2,6-diaminopurine E-analogue was inactive with the exception of a single EBV assay. The 2-amino-6-methoxypurine Z-methylenecyclopropane nucleoside analogue was an effective inhibitor of HCMV, MCMV and EBV. The 2,6-diaminopurine Z-prodrug seems to be the best candidate for further development.


Antimicrobial Agents and Chemotherapy | 2010

Stereoselective Phosphorylation of Cyclopropavir by pUL97 and Competitive Inhibition by Maribavir

Brian G. Gentry; Jeremy P. Kamil; Donald M. Coen; Jiri Zemlicka; John C. Drach

ABSTRACT Human cytomegalovirus (HCMV) is a widespread pathogen that can cause severe disease in immunologically immature and immunocompromised individuals. Cyclopropavir (CPV) is a guanine nucleoside analog active against human and murine cytomegaloviruses in cell culture and efficacious in mice by oral administration. Previous studies established that the mechanism of action of CPV involves inhibition of viral DNA synthesis. Based upon this action and the structural similarity of CPV to ganciclovir (GCV), we hypothesized that CPV must be phosphorylated to a triphosphate to inhibit HCMV DNA synthesis and that pUL97 is the enzyme responsible for the initial phosphorylation of CPV to a monophosphate (CPV-MP). We found that purified pUL97 phosphorylated CPV 45-fold more extensively than GCV, a known pUL97 substrate and the current standard of treatment for HCMV infections. Kinetic studies with CPV as the substrate for pUL97 demonstrated a Km of 1,750 ± 210 μM. Introduction of 1.0 or 10 nM maribavir, a known pUL97 inhibitor, and subsequent Lineweaver-Burk analysis demonstrated competitive inhibition of CPV phosphorylation, with a Ki of 3.0 ± 0.3 nM. Incubation of CPV with pUL97 combined with GMP kinase [known to preferentially phosphorylate the (+)-enantiomer of CPV-MP] established that pUL97 stereoselectively phosphorylates CPV to its (+)-monophosphate. These results elucidate the mechanism of CPV phosphorylation and help explain its selective antiviral action.


Nucleosides, Nucleotides & Nucleic Acids | 2003

Efficacy of Methylenecyclopropane Analogs of Nucleosides Against Herpesvirus Replication In Vitro

Nicole L. Kushner; Stephanie L. Williams; Caroll B. Hartline; Emma A. Harden; Deborah J. Bidanset; Xinchao Chen; Jiri Zemlicka; Earl R. Kern

Abstract We have reported previously that purine methylenecyclopropane analogs are potent agents against cytomegaloviruses. In an attempt to extend the activity of these compounds, the 2-amino-6-cyclopropylaminopurine analog, QYL-1064, was selected for further study by modifying the purine 6 substituent. A total of 22 analogs were tested against herpes simplex virus types 1 and 2 (HSV-1, HSV-2), varicella zoster virus (VZV), human cytomegalovirus (HCMV), murine cytomegalovirus (MCMV), Epstein-Barr virus (EBV), human herpesvirus type 6 (HHV-6) and human herpesvirus type 8 (HHV-8). Ten of the analogs had activity against at least one of the viruses tested. One compound had moderate activity against HSV-1 and six had activity against VZV. All but one compound was active against HCMV with a mean EC50 of 2.1 ± 0.6 µM, compared with a mean EC50 of 3.9 ± 0.8 µM for ganciclovir. Of special interest was the fact that eight of the ten compounds were active against both HHV-6A and HHV-6B with mean EC50 values of 6.0 ± 5.2 µM and <2.4 ± 1.5 µM, respectively. Only two compounds had activity against EBV, whereas all but one compound was active against HHV-8 with a mean EC50 of 3.1 ± 1.7 µM. These results indicate that members of this series of methylenecyclopropane analogs are highly active against HCMV, HHV-6, and HHV-8 but are less active against HSV, VZV, and EBV.


Antiviral Chemistry & Chemotherapy | 2000

Synthesis and enantioselectivity of the antiviral effects of (R,Z)-,(S,Z)-methylenecyclopropane analogues of purine nucleosides and phosphoralaninate prodrugs: influence of heterocyclic base, type of virus and host cells.

Yao-Ling Qiu; Geiser F; Kira T; Elizabeth A. Gullen; Yung-Chi Cheng; Roger G. Ptak; Julie M. Breitenbach; John C. Drach; Caroll B. Hartline; Earl R. Kern; Jiri Zemlicka

A series of R and S enantiomers of 2-aminopurine methylenecyclopropane analogues of nucleosides was synthesized. Two diastereoisomeric lipophilic phosphate prodrugs derived from R and S enantiomers of 2,6-diaminopurine analogue were also prepared. Enantioselectivity (diastereoselectivity in case of prodrugs) of in vitro antiviral effects was investigated with human and murine cytomegalovirus (HCMV and MCMV, respectively), herpes simplex virus types 1 and 2 (HSV-1 and HSV-2, respectively), human immunodeficiency virus type 1 (HIV-1), hepatitis B virus (HBV), Epstein—Barr virus (EBV) and varicella zoster virus (VZV). Strong differences in enantioselectivity were found between the R and S enantiomers of adenine analogue and enantiomeric 2-aminopurine analogues. Thus, the enantiomers of adenine analogue were equipotent against HCMV but not MCMV, where the S enantiomer is strongly preferred. The same S preference was found throughout the 2-aminopurine series for both HCMV and MCMV. In contrast, R-synadenol in HIV-1 assays was the best agent, whereas the S enantiomers of moderately effective 2-amino-6-cyclo-propylamino and 2-amino-6-methoxypurine analogues were preferred. Little enantiomeric preference was found for R and S enantiomers of synadenol and the corresponding enantiomers of 2,6-diaminopurine analogue against HBV. A mixed pattern of enantioselectivity was observed for EBV depending on the type of host cells and assay. Against VZV, the R and S enantiomers of adenine analogue were equipotent or almost equipotent, but throughout the series of 2-aminopurine analogues a distinct preference for the S enantiomers was found. The stereoselectivity pattern of both diastereoisomeric prodrugs mostly followed enantioselectivity of the parent analogues. The varying enantioselectivities in the series of purine methylenecyclopropane analogues are probably a consequence of differences in the mechanisms of action in different virus/host cell systems.

Collaboration


Dive into the Jiri Zemlicka's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mark N. Prichard

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge