Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jiro Nakayama is active.

Publication


Featured researches published by Jiro Nakayama.


Molecular Microbiology | 2001

Gelatinase biosynthesis-activating pheromone: a peptide lactone that mediates a quorum sensing in Enterococcus faecalis

Jiro Nakayama; Yong Cao; Takaaki Horii; Shohei Sakuda; Antoon D. L. Akkermans; Willem M. de Vos; Hiromichi Nagasawa

Biosynthesis of gelatinase, a virulence factor of Enterococcus faecalis, was found to be regulated in a cell density‐dependent fashion in which its production is active in late log to early stationary phase. Addition of early stationary phase culture filtrate to medium shifted the onset of gelatinase production to that of mid‐log phase, suggesting that E. faecalis secretes a gelatinase biosynthesis‐activating pheromone (GBAP). GBAP was isolated from culture supernatant of E. faecalis OG1S‐P. Structural analysis suggested GBAP to be an 11‐residue cyclic peptide containing a lactone structure, in which the α‐carboxyl group of the C‐terminal amino acid is linked to a hydroxyl group of the serine of the third residue. A synthetic peptide possessing the deduced structure showed GBAP activity at nanomolar concentrations as did natural GBAP. Database searches revealed that GBAP corresponds to a C‐terminal part of a 242‐residue FsrB protein. Northern analysis showed that GBAP slowly induces the transcription of two operons, fsrB‐fsrC encoding FsrB and a putative histidine kinase FsrC and gelE‐sprE encoding gelatinase GelE and serine protease SprE. Strains with an insertion mutation in either fsrC or a putative response regulator gene fsrA failed to respond to GBAP, suggesting that the GBAP signal is transduced by a two‐component regulatory system.


Antonie Van Leeuwenhoek International Journal of General and Molecular Microbiology | 2002

Cell to cell communication by autoinducing peptides in gram-positive bacteria

Mark Sturme; Michiel Kleerebezem; Jiro Nakayama; Antoon D. L. Akkermans; Elaine E. Vaughan; Willem M. de Vos

While intercellular communication systems in Gram-negative bacteria are often based on homoserine lactones as signalling molecules, it has been shown that autoinducing peptides are involved in intercellular communication in Gram-positive bacteria. Many of these peptides are exported by dedicated systems, posttranslationally modified in various ways, and finally sensed by other cells via membrane-located receptors that are part of two-component regulatory systems. In this way the expression of a variety of functions including virulence, genetic competence and the production of antimicrobial compounds can be modulated in a co-ordinated and cell density- and growth phase-dependent manner. Occasionally the autoinducing peptide has a dual function, such as in the case of nisin that is both a signalling pheromone involved in quorum sensing and an antimicrobial peptide. Moreover, biochemical, genetic and genomic studies have shown that bacteria may contain multiple quorum sensing systems, underlining the importance of intercellular communication. Finally, in some cases different peptides may be recognised by the same receptor, while also hybrid receptors have been constructed that respond to new peptides or show novel responses. This paper provides an overview of the characteristics of autoinducing peptide-based quorum sensing systems, their application in various gram-positive bacteria, and the discovery of new systems in natural and engineered ecosystems.


Fems Immunology and Medical Microbiology | 2009

Influence of antibiotic exposure in the early postnatal period on the development of intestinal microbiota

Shigemitsu Tanaka; Takako Kobayashi; Prapa Songjinda; Atsushi Tateyama; Mina Tsubouchi; Chikako Kiyohara; Taro Shirakawa; Kenji Sonomoto; Jiro Nakayama

The influence of antibiotic exposure in the early postnatal period on the development of intestinal microbiota was monitored in 26 infants including five antibiotic-treated (AT) subjects orally administered a broad-spectrum antibiotic for the first 4 days of life and three caesarean-delivered (CD) subjects whose mothers were intravenously injected by the similar type of antibiotics in the same period. The faecal bacterial composition was analysed daily for the first 5 days and monthly for the first 2 months. Terminal restriction fragment length polymorphisms in the AT subjects showed less diversity with the attenuation of the colonization of some bacterial groups, especially in Bifidobacterium and unusual colonization of Enterococcus in the first week than the control antibiotic-free infants (AF, n=18). Quantitative real-time PCR showed overgrowth of enterococci (day 3, P=0.01; day 5, P=0.003; month 1, P=0.01) and arrested growth of Bifidobacterium (day 3, P=0.03) in the AT group. Furthermore, after 1 month, the Enterobacteriaceae population was markedly higher in the AT group than in the AF group (month 1, P=0.02; month 2, P=0.02). CD infants sustained similar, although relatively weaker, alteration in the developing microbiota. These results indicate that antibiotic exposure at the beginning of life greatly influences the development of neonatal intestinal microbiota.


Journal of Bacteriology | 2005

An agr-Like Two-Component Regulatory System in Lactobacillus plantarum Is Involved in Production of a Novel Cyclic Peptide and Regulation of Adherence

Mark Sturme; Jiro Nakayama; Douwe Molenaar; Yoshiko Murakami; Ryoko Kunugi; Toshio Fujii; Elaine E. Vaughan; Michiel Kleerebezem; Willem M. de Vos

We have analyzed a locus on the annotated Lactobacillus plantarum WCFS1 genome that showed homology to the staphylococcal agr quorum-sensing system and designated it lam for Lactobacillus agr-like module. Production of the lamBDCA transcript was shown to be growth phase dependent. Analysis of a response regulator-defective mutant (Delta)lamA) in an adherence assay showed that lam regulates adherence of L. plantarum to a glass surface. Global transcription analysis of the wild-type and (Delta)lamA strains in early, mid-, and late log phase of growth was performed using a clone-based microarray. Remarkably, only a small set of genes showed significant differences in transcription profiles between the wild-type and lamA mutant strains. The microarray analysis confirmed that lamBDCA is autoregulatory and showed that lamA is involved in regulation of expression of genes encoding surface polysaccharides, cell membrane proteins, and sugar utilization proteins. The lamBD genes encoding the putative autoinducing peptide precursor (LamD) and its processing protein (LamB) were overexpressed using the nisin-controlled expression system, and culture supernatants were analyzed by liquid chromatography/mass spectrometry (LC/MS) to identify overproduced LamD-derived peptides. In this way, a cyclic thiolactone pentapeptide that possesses a ring structure similar to those of autoinducing peptides of the staphylococcal agr system was identified. The peptide was designated LamD558, and its sequence (CVGIW) matched the annotated precursor peptide sequence. Time course analysis of wild-type culture supernatants by LC/MS indicated that LamD558 production was increased markedly from mid-log to late log growth phase. This is the first example of an agr-like system in nonpathogenic bacteria that encodes a cyclic thiolactone autoinducing peptide and is involved in regulation of adherence.


Bioscience, Biotechnology, and Biochemistry | 2003

Identification of the Lantibiotic Nisin Q, a New Natural Nisin Variant Produced by Lactococcus lactis 61-14 Isolated from a River in Japan

Takeshi Zendo; Masanori Fukao; Kyoko Ueda; Tomoko Higuchi; Jiro Nakayama; Kenji Sonomoto

Lactococcus lactis 61-14 isolated from river water produced a bacteriocin active against a wide range of Gram-positive bacteria. N-terminal amino acid sequencing, mass spectral analysis of the purified bacteriocin, and genetic analysis using nisin-specific primers showed that the bacteriocin was a new natural nisin variant, termed nisin Q. Nisin Q and nisin A differ in four amino acids in the mature peptide and two in the leader sequence.


Applied and Environmental Microbiology | 2007

Structural Analysis and Characterization of Lacticin Q: a Novel Bacteriocin Belonging to a New Family of Unmodified Bacteriocins of Gram-Positive Bacteria

Koji Fujita; Shiro Ichimasa; Takeshi Zendo; Shoko Koga; Fuminori Yoneyama; Jiro Nakayama; Kenji Sonomoto

ABSTRACT Lactococcus lactis QU 5 isolated from corn produces a novel bacteriocin, termed lacticin Q. By acetone precipitation, cation-exchange chromatography, and reverse-phase high-performance liquid chromatography, lacticin Q was purified from the culture supernatant of this organism, and its molecular mass was determined to be 5,926.50 Da by mass spectrometry. Subsequent analyses of amino acid and DNA sequences revealed that lacticin Q comprised 53 amino acid residues and that its N-terminal methionine residue was formylated. In contrast to most bacteriocins produced by gram-positive bacteria, lacticin Q had no N-terminal extensions such as leader or signal sequences. It showed 66% and 48% identity to AucA, a hypothetical protein from Corynebacterium jeikeium plasmid pA501, and aureocin A53, a bacteriocin from Staphylococcus aureus A53, respectively. The characteristics of lacticin Q were determined and compared to those of nisin A. Similar to nisin A, lacticin Q exhibited antibacterial activity against various gram-positive bacteria. Lacticin Q was very stable against heat treatment and changes in pH; in particular, it was stable at alkaline pH values, while nisin A was inactivated. Moreover, lacticin Q induced ATP efflux from a Listeria sp. strain in a shorter time and at a lower concentration than nisin A, indicating that the former affected indicator cells in a different manner from that of the latter. The results described here clarified the fact that lacticin Q belongs to a new family of class II bacteriocins and that it can be employed as an alternative to or in combination with nisin A.


Scientific Reports | 2015

Diversity in gut bacterial community of school-age children in Asia

Jiro Nakayama; Koichi Watanabe; Jiahui Jiang; Kazunori Matsuda; Shiou Huei Chao; Pri Haryono; Orawan La-ongkham; Martinus Agus Sarwoko; I. Nengah Sujaya; Liang Zhao; Kang Ting Chen; Yen Po Chen; Hsueh Hui Chiu; Tomoko Hidaka; Ning Xin Huang; Chikako Kiyohara; Takashi Kurakawa; Naoshige Sakamoto; Kenji Sonomoto; Kousuke Tashiro; Hirokazu Tsuji; Ming-Ju Chen; Vichai Leelavatcharamas; Chii Cherng Liao; Sunee Nitisinprasert; Endang S. Rahayu; Fa Zheng Ren; Ying-Chieh Tsai; Yuan Kun Lee

Asia differs substantially among and within its regions populated by diverse ethnic groups, which maintain their own respective cultures and dietary habits. To address the diversity in their gut microbiota, we characterized the bacterial community in fecal samples obtained from 303 school-age children living in urban or rural regions in five countries spanning temperate and tropical areas of Asia. The microbiota profiled for the 303 subjects were classified into two enterotype-like clusters, each driven by Prevotella (P-type) or Bifidobacterium/Bacteroides (BB-type), respectively. Majority in China, Japan and Taiwan harbored BB-type, whereas those from Indonesia and Khon Kaen in Thailand mainly harbored P-type. The P-type microbiota was characterized by a more conserved bacterial community sharing a greater number of type-specific phylotypes. Predictive metagenomics suggests higher and lower activity of carbohydrate digestion and bile acid biosynthesis, respectively, in P-type subjects, reflecting their high intake of diets rich in resistant starch. Random-forest analysis classified their fecal species community as mirroring location of resident country, suggesting eco-geographical factors shaping gut microbiota. In particular, children living in Japan harbored a less diversified microbiota with high abundance of Bifidobacterium and less number of potentially pathogenic bacteria, which may reflect their living environment and unique diet.


Applied and Environmental Microbiology | 2009

Identification and Characterization of Lactocyclicin Q, a Novel Cyclic Bacteriocin Produced by Lactococcus sp. Strain QU 12

Naruhiko Sawa; Takeshi Zendo; Junko Kiyofuji; Koji Fujita; Kohei Himeno; Jiro Nakayama; Kenji Sonomoto

ABSTRACT Lactococcus sp. strain QU 12, which was isolated from cheese, produced a novel cyclic bacteriocin termed lactocyclicin Q. By using cation-exchange chromatography, hydrophobic interaction chromatography, and reverse-phase high-performance liquid chromatography, lactocyclicin Q was purified from culture supernatant, and its molecular mass was determined to be 6,062.8 Da by mass spectrometry. Lactocyclicin Q has been characterized by its unique antimicrobial spectrum, high level of protease resistance, and heat stability compared to other reported bacteriocins of lactic acid bacteria. The amino acid sequence of lactocyclicin Q was determined chemically, and this compound is composed of 61 amino acid residues that have a cyclic structure with linkage between the N and C termini by a peptide bond. It showed no homology to any other antimicrobial peptide, including cyclic bacteriocins. On the basis of the amino acid sequences obtained, the sequence of the gene encoding the prepeptide lactocyclicin Q was obtained. This is the first report of a cyclic bacteriocin purified from a strain belonging to the genus Lactococcus.


Applied and Environmental Microbiology | 2002

Description of a 23.9-Kilobase Chromosomal Deletion Containing a Region Encoding fsr Genes Which Mainly Determines the Gelatinase-Negative Phenotype of Clinical Isolates of Enterococcus faecalis in Urine

Jiro Nakayama; Reiko Kariyama; Hiromi Kumon

ABSTRACT Expression of virulence-related extracellular proteases, gelatinase, and serine protease of Enterococcus faecalis is regulated by a quorum-sensing system encoded by the fsr gene cluster. In this study, a 23.9-kb chromosomal deletion containing the fsr gene cluster region was found to be present in the majority (79%) of gelatinase-negative clinical isolates of E. faecalis from urine.


International Journal of Food Microbiology | 2011

16S rRNA pyrosequencing-based investigation of the bacterial community in nukadoko, a pickling bed of fermented rice bran

Naoshige Sakamoto; Shigemitsu Tanaka; Kenji Sonomoto; Jiro Nakayama

Nukadoko is a naturally fermented rice bran mash traditionally used for pickling vegetables in Japan; its refreshment and fermentation cycles sometimes continue for many years. Here, we investigated the structure and dynamics of the bacterial community in nukadoko by conducting pyrosequencing and quantitative polymerase chain reaction (PCR) analyses of 16S ribosomal RNA genes (rDNA). Of the 16 different samples studied, 13 showed Lactobacillus-dominated microbiota, suggesting that aged nukadoko samples tend to realize a niche, favorable Lactobacillus species. The lactic acid bacterial community of each of the 16 samples was classified into 3 types according to the presence or absence of 2 predominant species, Lactobacillus namurensis and Lactobacillus acetotolerans. The dynamics of the bacterial community during fermentation and the subsequent ripening process were examined using a laboratory model of nukadoko inoculated with an aged nukadoko sample (inoculated model). Lb. namurensis grew rapidly in the first 2 days, accompanied with a rapid decrease in pH and an increase in lactate levels, while Lb. acetotolerans grew with a longer doubling time and slow acidification during the 20 days after inoculation. On the other hand, spontaneous fermentation of the nukadoko model prepared from fresh rice bran without the nukadoko inoculation (inoculant-free model), showed the growth of some non-Lactobacillus species such as staphylococci and bacilli within the first 10 days; thereafter, Lb. namurensis was dominant, while Lb. acetotolerans was not detected during the 20-day experimental period. These results suggest that the naturally established Lactobacillus community in aged nukadoko is effectively involved in the biocontrol of the microbial community of nukadoko during the refreshment and fermentation cycles.

Collaboration


Dive into the Jiro Nakayama's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Akira Isogai

Nara Institute of Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge