Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Takeshi Zendo is active.

Publication


Featured researches published by Takeshi Zendo.


Microbial Cell Factories | 2014

Novel bacteriocins from lactic acid bacteria (LAB): various structures and applications

Rodney Honrada Perez; Takeshi Zendo; Kenji Sonomoto

Bacteriocins are heat-stable ribosomally synthesized antimicrobial peptides produced by various bacteria, including food-grade lactic acid bacteria (LAB). These antimicrobial peptides have huge potential as both food preservatives, and as next-generation antibiotics targeting the multiple-drug resistant pathogens. The increasing number of reports of new bacteriocins with unique properties indicates that there is still a lot to learn about this family of peptide antibiotics. In this review, we highlight our system of fast tracking the discovery of novel bacteriocins, belonging to different classes, and isolated from various sources. This system employs molecular mass analysis of supernatant from the candidate strain, coupled with a statistical analysis of their antimicrobial spectra that can even discriminate novel variants of known bacteriocins. This review also discusses current updates regarding the structural characterization, mode of antimicrobial action, and biosynthetic mechanisms of various novel bacteriocins. Future perspectives and potential applications of these novel bacteriocins are also discussed.


Bioscience, Biotechnology, and Biochemistry | 2003

Identification of the Lantibiotic Nisin Q, a New Natural Nisin Variant Produced by Lactococcus lactis 61-14 Isolated from a River in Japan

Takeshi Zendo; Masanori Fukao; Kyoko Ueda; Tomoko Higuchi; Jiro Nakayama; Kenji Sonomoto

Lactococcus lactis 61-14 isolated from river water produced a bacteriocin active against a wide range of Gram-positive bacteria. N-terminal amino acid sequencing, mass spectral analysis of the purified bacteriocin, and genetic analysis using nisin-specific primers showed that the bacteriocin was a new natural nisin variant, termed nisin Q. Nisin Q and nisin A differ in four amino acids in the mature peptide and two in the leader sequence.


Applied and Environmental Microbiology | 2007

Structural Analysis and Characterization of Lacticin Q: a Novel Bacteriocin Belonging to a New Family of Unmodified Bacteriocins of Gram-Positive Bacteria

Koji Fujita; Shiro Ichimasa; Takeshi Zendo; Shoko Koga; Fuminori Yoneyama; Jiro Nakayama; Kenji Sonomoto

ABSTRACT Lactococcus lactis QU 5 isolated from corn produces a novel bacteriocin, termed lacticin Q. By acetone precipitation, cation-exchange chromatography, and reverse-phase high-performance liquid chromatography, lacticin Q was purified from the culture supernatant of this organism, and its molecular mass was determined to be 5,926.50 Da by mass spectrometry. Subsequent analyses of amino acid and DNA sequences revealed that lacticin Q comprised 53 amino acid residues and that its N-terminal methionine residue was formylated. In contrast to most bacteriocins produced by gram-positive bacteria, lacticin Q had no N-terminal extensions such as leader or signal sequences. It showed 66% and 48% identity to AucA, a hypothetical protein from Corynebacterium jeikeium plasmid pA501, and aureocin A53, a bacteriocin from Staphylococcus aureus A53, respectively. The characteristics of lacticin Q were determined and compared to those of nisin A. Similar to nisin A, lacticin Q exhibited antibacterial activity against various gram-positive bacteria. Lacticin Q was very stable against heat treatment and changes in pH; in particular, it was stable at alkaline pH values, while nisin A was inactivated. Moreover, lacticin Q induced ATP efflux from a Listeria sp. strain in a shorter time and at a lower concentration than nisin A, indicating that the former affected indicator cells in a different manner from that of the latter. The results described here clarified the fact that lacticin Q belongs to a new family of class II bacteriocins and that it can be employed as an alternative to or in combination with nisin A.


Applied and Environmental Microbiology | 2009

Identification and Characterization of Lactocyclicin Q, a Novel Cyclic Bacteriocin Produced by Lactococcus sp. Strain QU 12

Naruhiko Sawa; Takeshi Zendo; Junko Kiyofuji; Koji Fujita; Kohei Himeno; Jiro Nakayama; Kenji Sonomoto

ABSTRACT Lactococcus sp. strain QU 12, which was isolated from cheese, produced a novel cyclic bacteriocin termed lactocyclicin Q. By using cation-exchange chromatography, hydrophobic interaction chromatography, and reverse-phase high-performance liquid chromatography, lactocyclicin Q was purified from culture supernatant, and its molecular mass was determined to be 6,062.8 Da by mass spectrometry. Lactocyclicin Q has been characterized by its unique antimicrobial spectrum, high level of protease resistance, and heat stability compared to other reported bacteriocins of lactic acid bacteria. The amino acid sequence of lactocyclicin Q was determined chemically, and this compound is composed of 61 amino acid residues that have a cyclic structure with linkage between the N and C termini by a peptide bond. It showed no homology to any other antimicrobial peptide, including cyclic bacteriocins. On the basis of the amino acid sequences obtained, the sequence of the gene encoding the prepeptide lactocyclicin Q was obtained. This is the first report of a cyclic bacteriocin purified from a strain belonging to the genus Lactococcus.


Antimicrobial Agents and Chemotherapy | 2009

Peptide-Lipid Huge Toroidal Pore, a New Antimicrobial Mechanism Mediated by a Lactococcal Bacteriocin, Lacticin Q

Fuminori Yoneyama; Yuichi Imura; Kanako Ohno; Takeshi Zendo; Jiro Nakayama; Katsumi Matsuzaki; Kenji Sonomoto

ABSTRACT Lacticin Q is a pore-forming bacteriocin produced by Lactococcus lactis QU 5, and its antimicrobial activity is in the nanomolar range. Lacticin Q induced calcein leakage from negatively charged liposomes. However, no morphological changes in the liposomes were observed by light scattering. Concomitantly with the calcein leakage, lacticin Q was found to translocate from the outer to the inner leaflet of the liposomes, after it initially bound to the membrane within 2 s. Lacticin Q also induced lipid flip-flop. These results reveal that the antimicrobial mechanism of lacticin Q can be described by the toroidal pore model. This is the first report of a bacteriocin of gram-positive bacteria that forms a toroidal pore. From liposomes, lacticin Q leaked fluorescence-labeled dextran with a diameter of 4.6 nm. In addition, lacticin Q caused the leakage of small proteins, such as the green fluorescent protein, from live bacterial cells. There are no other reports of antimicrobial peptides that exhibit protein leakage properties. The proposed pore formation model of lacticin Q is as follows: (i) quick binding to outer membrane leaflets; (ii) the formation of at least 4.6-nm pores, causing protein leakage with lipid flip-flop; and (iii) the migration of lacticin Q molecules from the outer to the inner membrane leaflets. Consequently, we termed the novel pore model in the antimicrobial mechanism of lacticin Q a “huge toroidal pore.”


Applied and Environmental Microbiology | 2006

Lactococcin Q, a Novel Two-Peptide Bacteriocin Produced by Lactococcus lactis QU 4

Takeshi Zendo; Shoko Koga; Yasushi Shigeri; Jiro Nakayama; Kenji Sonomoto

ABSTRACT A bacteriocin-producing strain, Lactococcus lactis QU 4, was isolated from corn. The bacteriocin, termed lactococcin Q, showed antibacterial activity only against L. lactis strains among a wide range of gram-positive indicator strains tested. Lactococcin Q was purified by acetone precipitation, cation exchange chromatography, and reverse-phase chromatography. Lactococcin Q consisted of two peptides, α and β, whose molecular masses were determined to be 4,260.43 Da and 4,018.36 Da, respectively. Amino acid and DNA sequencing analyses revealed that lactococcin Q was a novel two-peptide bacteriocin, homologous to lactococcin G. Comparative study using chemically synthesized lactococcin Q (Qα plus Qβ) and lactococcin G (Gα plus Gβ) clarified that hybrid combinations (Qα plus Gβ and Gα plus Qβ) as well as original combinations showed antibacterial activity, although each single peptide showed no significant activity. These four pairs of lactococcin peptides acted synergistically at a 1:1 molar ratio and exhibited identical antibacterial spectra but differed in MIC. The MIC of Qα plus Gβ was 32 times higher than that of Qα plus Qβ, suggesting that the difference in β peptides was important for the intensity of antibacterial activity.


Journal of Applied Microbiology | 2005

Identification and production of a bacteriocin from Enterococcus mundtii QU 2 isolated from soybean.

Takeshi Zendo; N. Eungruttanagorn; S. Fujioka; Yukihiro Tashiro; K. Nomura; Y. Sera; Genta Kobayashi; Jiro Nakayama; Ayaaki Ishizaki; Kenji Sonomoto

Aims:  Identification of the bacteriocin produced by Enterococcus mundtii QU 2 newly isolated from soybean and fermentative production of the bacteriocin.


Molecular Microbiology | 2009

Evaluation of essential and variable residues of nukacin ISK‐1 by NNK scanning

Mohammad Riazul Islam; Kouki Shioya; Jun-ichi Nagao; Mami Nishie; Hiroyuki Jikuya; Takeshi Zendo; Jiro Nakayama; Kenji Sonomoto

Nukacin ISK‐1, a type‐A(II) lantibiotic, comprises 27 amino acids with a distinct linear N‐terminal and a globular C‐terminal region. To identify the positional importance or redundancy of individual residues responsible for nukacin ISK‐1 antimicrobial activity, we replaced the native codons of the parent peptide with NNK triplet oligonucleotides in order to generate a bank of nukacin ISK‐1 variants. The bioactivity of each peptide variant was evaluated by colony overlay assay, and hence we identified three Lys residues (Lys1, Lys2 and Lys3) that provided electrostatic interactions with the target membrane and were significantly variable. The ring structure of nukacin ISK‐1 was found to be crucially important as replacing the ring‐forming residues caused a complete loss of bioactivity. In addition to the ring‐forming residues, Gly5, His12, Asp13, Met16, Asn17 and Gln20 residues were found to be essential for antimicrobial activity; Val6, Ile7, Val10, Phe19, Phe21, Val22, Phe23 and Thr24 were relatively variable; and Ser4, Pro8, His15 and Ser27 were extensively variable relative to their positions. We obtained two variants, Asp13Glu and Val22Ile, which exhibited a twofold higher specific activity compared with the wild‐type and are the first reported type‐A(II) lantibiotic mutant peptides with increased potency.


Applied and Environmental Microbiology | 2011

Efficient Homofermentative l-(+)-Lactic Acid Production from Xylose by a Novel Lactic Acid Bacterium, Enterococcus mundtii QU 25

Mohamed Ali Abdel-Rahman; Yukihiro Tashiro; Takeshi Zendo; Katsuhiro Hanada; Keisuke Shibata; Kenji Sonomoto

ABSTRACT Enterococcus mundtii QU 25, a newly isolated lactic acid bacterium, efficiently metabolized xylose into l-lactate. In batch fermentations, the strain produced 964 mM l-(+)-lactate from 691 mM xylose, with a yield of 1.41 mol/mol xylose consumed and an extremely high optical purity of ≥99.9% without acetate production.


Antimicrobial Agents and Chemotherapy | 2013

Effects of Bacteriocins on Methicillin-Resistant Staphylococcus aureus Biofilm

Ken Ichi Okuda; Takeshi Zendo; Shinya Sugimoto; Tadayuki Iwase; Akiko Tajima; Satomi Yamada; Kenji Sonomoto; Yoshimitsu Mizunoe

ABSTRACT Control of biofilms formed by microbial pathogens is an important subject for medical researchers, since the development of biofilms on foreign-body surfaces often causes biofilm-associated infections in patients with indwelling medical devices. The present study examined the effects of different kinds of bacteriocins, which are ribosomally synthesized antimicrobial peptides produced by certain bacteria, on biofilms formed by a clinical isolate of methicillin-resistant Staphylococcus aureus (MRSA). The activities and modes of action of three bacteriocins with different structures (nisin A, lacticin Q, and nukacin ISK-1) were evaluated. Vancomycin, a glycopeptide antibiotic used in the treatment of MRSA infections, showed bactericidal activity against planktonic cells but not against biofilm cells. Among the tested bacteriocins, nisin A showed the highest bactericidal activity against both planktonic cells and biofilm cells. Lacticin Q also showed bactericidal activity against both planktonic cells and biofilm cells, but its activity against biofilm cells was significantly lower than that of nisin A. Nukacin ISK-1 showed bacteriostatic activity against planktonic cells and did not show bactericidal activity against biofilm cells. Mode-of-action studies indicated that pore formation leading to ATP efflux is important for the bactericidal activity against biofilm cells. Our results suggest that bacteriocins that form stable pores on biofilm cells are highly potent for the treatment of MRSA biofilm infections.

Collaboration


Dive into the Takeshi Zendo's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge