Jiro Soda
Kobe University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jiro Soda.
Physical Review Letters | 2009
Tomohiro Takahashi; Jiro Soda
We study primordial gravitational waves produced during inflation in quantum gravity at a Lifshitz point proposed by Horava. Assuming power-counting renormalizability, foliation-preserving diffeomorphism invariance, and the condition of detailed balance, we show that primordial gravitational waves are circularly polarized due to parity violation. The chirality of primordial gravitational waves is a quite robust prediction of quantum gravity at a Lifshitz point which can be tested through observations of cosmic microwave background radiation and stochastic gravitational waves.
Physical Review Letters | 2009
Masa-aki Watanabe; Sugumi Kanno; Jiro Soda
We study an inflationary scenario with a vector field coupled with an inflaton field and show that the inflationary Universe is endowed with anisotropy for a wide range of coupling functions. This anisotropic inflation is a tracking solution where the energy density of the vector field follows that of the inflaton field irrespective of initial conditions. We find a universal relation between the anisotropy and a slow-roll parameter of inflation. Our finding has observational implications and gives a counterexample to the cosmic no-hair conjecture.
Journal of Cosmology and Astroparticle Physics | 2008
Shuichiro Yokoyama; Jiro Soda
We present a new mechanism for generating primordial statistical anisotropy of curvature perturbations. We introduce a vector field which has a non-minimal kinetic term and couples with a waterfall field in a hybrid inflation model. In such a system, the vector field gives fluctuations of the end of inflation and hence induces a subcomponent of curvature perturbations. Since the vector has a preferred direction, the statistical anisotropy could appear in the fluctuations. We present the explicit formula for the statistical anisotropy in the primordial power spectrum and the bispectrum of curvature perturbations. Interestingly, there is the possibility that the statistical anisotropy does not appear in the power spectrum but does appear in the bispectrum. We also find that the statistical anisotropy provides the shape dependence to the bispectrum.
Progress of Theoretical Physics | 2010
Masa-aki Watanabe; Sugumi Kanno; Jiro Soda
We study the statistical nature of primordial fluctuations from an anisotropic inflation which is realized by a vector field coupled to an inflaton. We find a suitable gauge, which we call the canonical gauge, for anisotropic inflation by generalizing the flat slicing gauge in conventional isotropic inflation. Using the canonical gauge, we reveal the structure of the couplings between curvature perturbations, vector waves, and gravitational waves. We identify two sources of anisotropy, i.e. the anisotropy due to the anisotropic expansion of the universe and that due to the anisotropic couplings among variables. It turns out that the latter effect is dominant. Since the coupling between the curvature perturbations and vector waves is the strongest one, the statistical anisotropy in the curvature perturbations is larger than that in gravitational waves. We find the cross correlation between the curvature perturbations and gravitational waves which never occurs in conventional inflation. We also find the linear polarization of gravitational waves. Finally, we discuss cosmological implication of our results.
Physics Reports | 2013
Azadeh Maleknejad; M. M. Sheikh-Jabbari; Jiro Soda
Abstract The isotropy and homogeneity of the cosmic microwave background (CMB) favors “scalar driven” early Universe inflationary models. However, gauge fields and other non-scalar fields are far more common at all energy scales, in particular at high energies seemingly relevant to inflation models. Hence, in this review we consider the role and consequences, theoretical and observational, that gauge fields can have during the inflationary era. Gauge fields may be turned on in the background during inflation, or may become relevant at the level of cosmic perturbations. There have been two main classes of models with gauge fields in the background, models which show violation of the cosmic no-hair theorem and those which lead to isotropic FLRW cosmology, respecting the cosmic no-hair theorem. Models in which gauge fields are only turned on at the cosmic perturbation level, may source primordial magnetic fields. We also review specific observational features of these models on the CMB and/or the primordial cosmic magnetic fields. Our discussions will be mainly focused on the inflation period, with only a brief discussion on the post inflationary (p)reheating era.
Journal of Cosmology and Astroparticle Physics | 2009
Sugumi Kanno; Jiro Soda; Masa-aki Watanabe
We study the backreaction problem in a mechanism of magnetogenesis from inflation. In usual analysis, it has been assumed that the backreaction due to electromagnetic fields spoils inflation once it becomes important. However, there exists no justification for this assumption. Hence, we analyze magnetogenesis from inflation by taking into account the backreaction. On the contrary to the naive expectation, we show that inflation still continues even after the backreaction begins to work. Nevertheless, it turns out that creation of primordial magnetic fields is significantly suppressed due to the backreaction.
Classical and Quantum Gravity | 2012
Jiro Soda
We review an inflationary scenario with the anisotropic expansion rate. An anisotropic inflationary universe can be realized by a vector field coupled with an inflaton, which can be regarded as a counter example to the cosmic no-hair conjecture. We show the generality of anisotropic inflation and derive a universal property. We formulate cosmological perturbation theory in anisotropic inflation. Using the formalism, we show that anisotropic inflation gives rise to the statistical anisotropy in primordial fluctuations. We also explain a method to test anisotropic inflation using the cosmic microwave background radiation.
Physical Review D | 2006
Keiju Murata; Jiro Soda
We study the Hawking radiation from Rotating black holes from the gravitational anomalies point of view. First, we show that the scalar field theory near the Kerr black hole horizon can be reduced to the 2-dimensional effective theory. Then, following Robinson and Wilczek, we derive the Hawking flux by requiring the cancellation of gravitational anomalies. We also apply this method to Hawking radiation from higher dimensional Myers-Perry black holes. In the appendix, we present the trace anomaly derivation of Hawking radiation to argue the validity of the boundary condition at the horizon.
Physics Letters B | 2000
Hiromi Saida; Jiro Soda
Abstract For the BTZ black hole in the Einstein gravity, a statistical entropy has been calculated to be equal to the Bekenstein–Hawking entropy. In this paper, the statistical entropy of the BTZ black hole in the higher curvature gravity is calculated and shown to be equal to the one derived by using the Noether charge method. This suggests that the equivalence of the geometrical and statistical entropies of the black hole is retained in the general diffeomorphism invariant theories of gravity. A relation between the cosmic censorship conjecture and the unitarity of the conformal field theory on the boundary of AdS 3 is also discussed.
Physical Review D | 2002
Sugumi Kanno; Jiro Soda
The low energy effective theory for the Randall-Sundrum two brane system is investigated with an emphasis on the role of the non-linear radion in the brane world. The equations of motion in the bulk is solved using a low energy expansion method. This allows us, through the junction conditions, to deduce the effective equations of motion for the gravity on the brane. It is shown that the gravity on the brane world is described by a quasi-scalar-tensor theory with a specific coupling function omega(Psi) = 3 Psi / 2(1-Psi) on the positive tension brane and omega(Phi) = -3 Phi / 2(1+Phi) on the negative tension brane, where Psi and Phi are non-linear realizations of the radion on the positive and negative tension branes, respectively. In contrast to the usual scalar-tensor gravity, the quasi-scalar-tensor gravity couples with two kinds of matter, namely, the matters on both positive and negative tension branes, with different effective gravitational coupling constants. In particular, the radion disguised as the scalar fields Psi and Phi couples with the sum of the traces of the energy momentum tensor on both branes. In the course of the derivation, it has been revealed that the radion plays an essential role to convert the non-local Einstein gravity with the generalized dark radiation to the local quasi-scalar-tensor gravity. For completeness, we also derive the effective action for our theory by substituting the bulk solution into the original action. It is also shown that the quasi-scalar-tensor gravity works as holograms at the low energy in the sense that the bulk geometry can be reconstructed from the solution of the quasi-scalar-tensor gravity.