Jiude Mao
University of Missouri
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jiude Mao.
Biology of Reproduction | 2014
Kristin M. Whitworth; Kiho Lee; Joshua A. Benne; Benjamin P. Beaton; Lee D. Spate; Stephanie L. Murphy; Melissa Samuel; Jiude Mao; Chad O'Gorman; Eric M. Walters; Clifton N. Murphy; John P. Driver; Alan Mileham; David G. McLaren; Kevin D. Wells; Randall S. Prather
ABSTRACT Targeted modification of the pig genome can be challenging. Recent applications of the CRISPR/Cas9 system hold promise for improving the efficacy of genome editing. When a designed CRISPR/Cas9 system targeting CD163 or CD1D was introduced into somatic cells, it was highly efficient in inducing mutations. When these mutated cells were used with somatic cell nuclear transfer, offspring with these modifications were created. When the CRISPR/Cas9 system was delivered into in vitro produced presumptive porcine zygotes, the system was effective in creating mutations in eGFP, CD163, and CD1D (100% targeting efficiency in blastocyst stage embryos); however, it also presented some embryo toxicity. We could also induce deletions in CD163 or CD1D by introducing two types of CRISPRs with Cas9. The system could also disrupt two genes, CD163 and eGFP, simultaneously when two CRISPRs targeting two genes with Cas9 were delivered into zygotes. Direct injection of CRISPR/Cas9 targeting CD163 or CD1D into zygotes resulted in piglets that have mutations on both alleles with only one CD1D pig having a mosaic genotype. We show here that the CRISPR/Cas9 system can be used by two methods. The system can be used to modify somatic cells followed by somatic cell nuclear transfer. System components can also be used in in vitro produced zygotes to generate pigs with specific genetic modifications.
Proceedings of the National Academy of Sciences of the United States of America | 2010
Jiude Mao; Xia Zhang; Paizlee T. Sieli; Michael T. Falduto; Karen E. O. Torres; Cheryl S. Rosenfeld
Diet during pregnancy influences the future health of a womans offspring, with outcomes differing depending on the childs sex. Because the placenta buffers the fetus from the mother, we examined the impact of diet and fetal sex on placental gene expression in mice fed either a very-high-fat, low-fat, chow diet of intermediate caloric density. At day 12.5 of pregnancy, placental RNA was extracted and analyzed by microarray. The expression of 1,972 genes was changed more than 2-fold (P < 0.05) in comparisons across diet in at least one of the three groups. Female placentae demonstrated more striking alterations in gene expression in response to maternal diet than male placentae. Notably, each diet provided a distinctive signature of sexually dimorphic genes, with expression generally higher in genes (651 out of 700) from female placentae than those from male placentae. Several genes normally considered as characteristic of kidney function were affected by diet, including genes regulating ion balance and chemoreception. The placenta also expressed most of the known olfactory receptor genes (Olfr), which may allow the placenta to sense odorant molecules and other minor dietary components, with transcript levels of many of these genes influenced by diet and fetal sex. In conclusion, gene expression in the murine placenta is adaptive and shaped by maternal diet. It also exhibits pronounced sexual dimorphism, with placentae of females more sensitive to nutritional perturbations than placentae of males.
Biology of Reproduction | 2002
Jiude Mao; Guangming Wu; M. F. Smith; Tod C. McCauley; T.C. Cantley; Randall S. Prather; Brad A. Didion; Billy N. Day
Abstract Developing a culture system for preantral follicles has important biotechnological implications due to the potential to produce large number of oocytes for embryo production and transfer. As an initial step toward accomplishing this long-term goal, a study was conducted to determine the effects of culture medium, serum type, and different concentrations of FSH on preantral follicular development in vitro. Specific endpoints included follicular growth rate, antrum formation, recovery rate of cumulus cell-oocyte complexes (COCs) from follicles, and oocyte meiotic competence. Compared with the North Carolina State University medium 23 (NCSU23), preantral follicles cultured in TCM199 medium for 4 days grew faster (P < 0.02). However, more follicles cultured in NCSU23 differentiated to form an antrum than in TCM199 (P < 0.01). For this reason, NCSU23 was chosen to investigate the role of FSH and serum type in regulating preantral follicular growth. Compared with the 0 mIU/ml FSH control, addition of 2 mIU/ml FSH to the medium stimulated follicular growth and antrum formation and suppressed apoptosis of granulosa cells (P < 0.05), supporting the essential role of FSH in preantral follicular growth and development. Another experiment compared fetal calf serum (FCS) with prepubertal gilt serum (PGS) and studied different concentrations of FSH in the culture medium (0.5, 1, and 2 mIU/ml). The best follicular growth rate was obtained with 2 mIU/ml compared with 0.5 or 1 mIU/ml FSH. Compared with PGS, FCS supplementation increased the cumulative percentage of antral follicles and COC recovery rate (P < 0.04). None of the oocytes recovered from any of these experiments reached metaphase II stage after maturation in vitro. In summary, culture medium, serum type, and FSH concentration in the medium interacted to affect follicular growth and antrum formation in vitro. These results suggest that a longer term culture of preantral follicles (>4 days) may be needed to produce oocytes capable of undergoing meiosis in vitro.
Biology of Reproduction | 2003
Tod C. McCauley; William C. Buhi; Guangming Wu; Jiude Mao; J. N. Caamaño; Brad A. Didion; B.N. Day
Abstract Oviduct-specific glycoprotein (OGP) displays estrus-associated regional and temporal differences in expression and localizes to the zona pellucida, perivitelline space, and plasma membrane of oviductal oocytes and embryos, suggesting that it may have a role in regulation of fertilization and/or early embryonic development. The aims of this study were to evaluate the effect of exogenous OGP on in vitro fertilization (IVF) and embryo development in the pig using a defined serum-free culture system. In vitro-matured porcine oocytes were incubated with homologous OGP (0, 1, 10, 20, and 40 μg/ml) for 3 h and then washed prior to IVF. Exposure of oocytes to 10 or 20 μg/ml porcine OGP (pOGP) significantly reduced the incidence of polyspermy compared with the control (P < 0.01) while maintaining high penetration rates. When oocytes, spermatozoa, or both were preincubated with 10 μg/ml pOGP prior to IVF, the incidence of polyspermy was similarly reduced (P < 0.01) by all three treatments without affecting penetration rates. The ability of spermatozoa to undergo calcium ionophore-induced acrosome reaction was similar with or without exposure to pOGP. However, significantly fewer spermatozoa (P < 0.01) bound to the zona pellucida when oocytes were preincubated with pOGP. To evaluate the effect of pOGP on embryo development, embryos were cultured in pOGP-supplemented medium for 48 h or 144 h. Both transient and continuous exposure to pOGP significantly enhanced cleavage and blastocyst formation rate compared with the control (P < 0.01). These data demonstrate that exposure of either in vitro-matured oocytes or spermatozoa to pOGP decreased polyspermy and spermatozoa binding while maintaining high penetration rates of pig oocytes fertilized in vitro. Furthermore, pOGP exerted an embryotrophic effect independent of effects demonstrated on spermatozoa and oocytes at fertilization.
Biology of Reproduction | 2003
Yanhong Hao; Liangxue Lai; Jiude Mao; Gi-Sun Im; Aaron Bonk; Randall S. Prather
Abstract Apoptosis occurs during preimplantation development in both in vivo- and in vitro-produced embryos, and it may contribute to embryonic loss. The present study investigated the development of porcine nuclear transfer (NT) embryos reconstructed by using fetal fibroblasts as compared to embryos produced by in vitro fertilization (IVF). The onset and the frequency of apoptosis in NT and IVF embryos were examined via morphological and nuclear changes and TUNEL assay. The NT blastocysts had a similar number of nuclei as compared to IVF blastocysts and appeared to be morphologically similar. Relative to IVF embryos, the NT embryos had a lower cleavage rate (42.7% vs. 71.0%) and a lower developmental rate (11.1% vs. 28.6%) to the blastocyst stage. The earliest positive TUNEL signals were detected in the NT embryos on Day 5 of culture. The percentage of cells undergoing apoptosis in the NT embryos was higher than that of the IVF embryos and increased with time in vitro. Some of the abnormal morphological changes observed during early development related to apoptosis. Cytoplasmic fragmentation, developmental arrest, and nuclear condensation were typical characteristics of embryos undergoing apoptosis. Some mechanisms of the apoptotic pathway were triggered by changes in the NT embryos. The developmental rates of NT embryos might be improved by identifying specific apoptotic pathways and then intervening in these pathways to improve development.
Biology of Reproduction | 2004
Yanhong Hao; Liangxue Lai; Jiude Mao; Gi-Sun Im; Aaron Bonk; Randall S. Prather
Abstract Parthenogenesis (PA) of the oocyte is essential to a number of oocyte- or embryo-related technologies such as intracytoplasmic sperm injection and cloning by nuclear transfer. This study investigated the onset and frequency of apoptosis in PA- porcine embryos and the morphological changes that conform to the general criteria of apoptotic cell death by using a terminal deoxynucleatidyl transferase-mediated deoxyuridine 5-triphosphate nick-end labeling (TUNEL) assay. PA embryos had a higher degree of apoptotic cell death during in vitro culture, a lower cleavage rate (45% vs. 71%), and a lower development rate to the blastocyst stage (16% vs. 29%), relative to in vitro fertilization (IVF). The earliest positive TUNEL signal in the PA embryos was detected on Day 6, 1 day later than that in IVF embryos. Apoptosis in PA embryos increased from 15% of the embryos on Day 6 to 29% on Day 8. The mean level of apoptosis of the PA embryos was statistically higher than that of IVF embryos, except on Day 5. In particular, apoptosis in PA embryos was twice that of IVF embryos on Day 6 (15% vs. 6.7%) and Day 8 (29% vs. 13%). The mean cell number in PA blastocysts was significantly lower than that of IVF blastocysts, whereas the percentage of apoptosis in PA blastocysts was significantly higher than that of IVF blastocysts. There was a high percentage of haploid (62.5%) PA blastocysts. The ploidy may contribute to a high level of apoptosis. These results may help to explain the mechanism of parthenogenetic developmental failure and may lead to methods that will improve parthenogenetic development.
Biology of Reproduction | 2006
Yanhong Hao; Nagappan Mathialagan; Eric M. Walters; Jiude Mao; Liangxue Lai; Donald F. Becker; Wensheng Li; John K. Critser; Randall S. Prather
Abstract This study was designed to determine the role of osteopontin (SPP1) in in vitro fertilization (IVF) in swine. The initial objective was to evaluate the effect of various concentrations of SPP1 (0, 0.001, 0.01, 0.1 and 1 μg/ml) on spermatozoa and oocytes during IVF. The results demonstrate that SPP1 reduced the rate of polyspermy in a dose-dependent manner (P < 0.05). SPP1 also reduced both the number of sperm in oocytes as compared to the control and the number of spermatozoa bound to the zona pellucida (ZP) (P < 0.05). High doses of SPP1 (1 μg/ml) reduced penetration and male pronucleus formation as compared to the control (P < 0.05). Interestingly, compared to the control group, medium doses of SPP1 increased fertilization efficiency (42.6% and 44.6% vs. 31.6%; P < 0.05), representing a 41% improvement for 0.1 μg/ml SPP1). The ZP of 0.1 μg/ml SPP1-treated oocytes was more difficult to digest than control oocytes (P < 0.05). The percentage of acrosome-reacted spermato zoa bound to the ZP during IVF increased after 4 h of 1.0 μg/ml SPP1 treatment compared to 0 or 0.1 μg/ml SPP1. SPP1 did not have an effect on sperm motility, progressive motility, and sperm viability. To confirm that the reduction of polyspermy was specific to SPP1, a mixture of pregnancy-associated glycoproteins was included in the IVF protocol and shown to have no effect on polyspermy. Furthermore, Western blotting demonstrated that a 50-kDa SPP1 form was present in the oviducts on Days 0, 3, and 5 in pregnant and nonpregnant gilts, and the concentration of SPP1 on Day 0 was higher than on Days 3 and 5. The current study represents the first report to demonstrate that SPP1 plays an important role in the regulation of pig polyspermic fertilization; it decreases polyspermy and increases fertilization efficiency during IVF.
Environmental Health Perspectives | 2011
Paizlee T. Sieli; Eldin Jašarević; Denise A. Warzak; Jiude Mao; Mark R. Ellersieck; Chunyang Liao; Kurunthachalam Kannan; Séverine H. Collet; Pierre-Louis Toutain; Frederick S. vom Saal; Cheryl S. Rosenfeld
Background: Bisphenol A (BPA) is a widely produced endocrine-disrupting chemical. Diet is a primary route of exposure, but internal exposure (serum concentrations) in animals and humans has been measured only after single oral bolus administration. Objective: We compared serum concentrations of BPA over a 24-hr period after oral bolus administration or ad libitum feeding in mice and assessed for buildup with dietary exposure. Methods: Adult female mice were administered [dimethyl-d6]-BPA (BPA-d6) as a single oral bolus (20 mg/kg body weight) or fed a diet containing 100 mg BPA-d6/kg feed weight ad libitum for 1 week. Serum concentrations were analyzed using isotope dilution liquid chromatography coupled with electrospray tandem mass spectrometry and compared between exposure groups over the first 23 hr and after 7 days of dietary exposure. Results: Maximum concentration (Cmax) for BPA-d6 during the first 24 hr was reached at 1 hr and 6 hr for oral bolus and diet groups, respectively. Relative BPA-d6 bioavailability (unconjugated BPA-d6) was higher in diet-exposed mice than in the bolus group despite a relative lower absorption, a phenomenon consistent with an inhibitory effect of food on first-pass hepatic metabolism. In mice with ongoing dietary exposure, unconjugated BPA-d6 was higher on day 7 than on day 1. Conclusions: This is the first report of serum BPA concentrations in an animal model exposed to this chemical via the diet. Although bolus administration of BPA-d6 led to peak concentrations within 1 hr, Cmax for diet-exposed mice was delayed for several hours. However, bolus administration underestimates bioavailable serum BPA concentrations in animals—and presumably humans—than would result from dietary exposure. Exposure via diet is a more natural continuous exposure route than oral bolus exposure and is thus a better predictor of BPA concentrations in chronically exposed animals and humans.
Journal of Virology | 2013
Randall S. Prather; Raymond R. R. Rowland; Catherine Ewen; Benjamin R. Trible; Maureen Kerrigan; Bhupinder Bawa; Jennifer Teson; Jiude Mao; Kiho Lee; Melissa Samuel; Kristin M. Whitworth; Clifton N. Murphy; Tina Egen; Jonathan A. Green
ABSTRACT Surface expression of SIGLEC1, also known as sialoadhesin or CD169, is considered a primary determinant of the permissiveness of porcine alveolar macrophages for infection by porcine reproductive and respiratory syndrome virus (PRRSV). In vitro, the attachment and internalization of PRRSV are dependent on the interaction between sialic acid on the virion surface and the sialic acid binding domain of the SIGLEC1 gene. To test the role of SIGLEC1 in PRRSV infection, a SIGLEC1 gene knockout pig was created by removing part of exon 1 and all of exons 2 and 3 of the SIGLEC1 gene. The resulting knockout ablated SIGLEC1 expression on the surface of alveolar macrophages but had no effect on the expression of CD163, a coreceptor for PRRSV. After infection, PRRSV viremia in SIGLEC1 −/− pigs followed the same course as in SIGLEC1 −/+ and SIGLEC1 +/+ littermates. The absence of SIGLEC1 had no measurable effect on other aspects of PRRSV infection, including clinical disease course and histopathology. The results demonstrate that the expression of the SIGLEC1 gene is not required for infection of pigs with PRRSV and that the absence of SIGLEC1 does not contribute to the pathogenesis of acute disease.
Biology of Reproduction | 2002
Guangming Wu; Qing-Yuan Sun; Jiude Mao; Liangxue Lai; Tod C. McCauley; Kwang-Wook Park; Randall S. Prather; Brad A. Didion; Billy N. Day
Abstract Butyrolactone I specifically inhibits M-phase promoting factor activation and prevents the resumption of meiosis. These experiments were conducted to examine effects of butyrolactone I on pig oocytes in a serum-free maturation system. The first experiment was conducted to determine the effect of butyrolactone I (0–100 μM) on nuclear maturation. At concentrations of ≥12.5 μM, germinal vesicle breakdown was prevented in >90% of the oocytes after 24 h of culture. In the second experiment, the kinetics of in vitro maturation of butyrolactone I-treated oocytes was investigated. Oocytes were treated with 0 or 12.5 μM butyrolactone I and FSH for 20 h and then cultured with LH in the absence of butyrolactone I for another 24 h. Fewer butyrolactone I-treated oocytes reached MII stage at 36 h compared with controls (5.8% vs. 62.4%, P < 0.01). However, by 44 h, 83.4% of butyrolactone I-treated oocytes reached MII compared with 88.6% of controls. In the third experiment, butyrolactone I-treated oocytes were fertilized and cultured in vitro. No differences (P > 0.05) were found between controls and treated groups in cleavage rate, blastocyst rate, or mean number of cells per blastocyst. Effects of butyrolactone I on mitogen-activated protein kinase activation and localization of microfilaments and active mitochondria were examined by Western blot analysis and laser scanning confocal microscopy, respectively. The results suggested that although butyrolactone I reversibly inhibited germinal vesicle breakdown and mitogen-activated protein kinase activation, it did not affect mitochondrial and microfilament dynamics. Butyrolactone I is a potent inhibitor of nuclear maturation of porcine oocytes, and the inhibition is fully reversible.