Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jiyan Liu is active.

Publication


Featured researches published by Jiyan Liu.


PLOS ONE | 2013

Toll-like receptor -1, -2, and -6 polymorphisms and pulmonary tuberculosis susceptibility: a systematic review and meta-analysis.

Yuxiang Zhang; Tingting Jiang; Xiuyun Yang; Yun Xue; Chong Wang; Jiyan Liu; Xing Zhang; Zhong-Liang Chen; Mengyuan Zhao; Ji-Cheng Li

Background A large number of studies have investigated whether polymorphisms in the Toll-like receptor (TLR) genes are implicated in susceptibility to tuberculosis (TB) in different populations. However, the results are inconsistent and inconclusive. Methods A literature search was conducted using the PubMed, EMBASE, Medline (Ovid), ISI Web of Knowledge and Chinese National Knowledge Infrastructure (CNKI). A meta-analysis on the associations between the TLR1 G1805T, TLR2 T597C, T1350C, G2258A, and TLR6 C745T polymorphisms and TB risk was carried out by comparison using different genetic models. Results In total, 16 studies from 14 articles were included in this review. In meta-analysis, significant associations were observed between the TLR2 2258AA (AA vs. AG+AG, OR 5.82, 95% CI 1.30–26.16, P = 0.02) and TLR6 745TT (TT vs. CT+CC, OR 0.61, 95% CI 0.39–0.97, P = 0.04) polymorphisms and TB risk. In the subgroup analysis by ethnicity, Africans and American Hispanic subjects with the TLR1 1805T allele had an increased susceptibility, whereas Asian and European subjects with the TLR2 2258A allele had an increased susceptibility to TB. Conclusions The meta-analysis indicated that TLR2 G2258A is associated with increased TB risk, especially in Asians and Europeans. TLR1 G1805T is associated with increased TB in Africans and American Hispanics. TLR6 C745T is associated with decreased TB risk. Our systematic review and meta-analysis reported an interesting preliminary conclusion, but this must be validated by future large-scale and functional studies in different populations.


PLOS ONE | 2013

Screening and Identification of Six Serum microRNAs as Novel Potential Combination Biomarkers for Pulmonary Tuberculosis Diagnosis

Xing Zhang; Jing Guo; Shufeng Fan; Yanyuan Li; Li-Liang Wei; Xiuyun Yang; Tingting Jiang; Zhong-Liang Chen; Chong Wang; Jiyan Liu; Ze-Peng Ping; Dandan Xu; Jiaxiong Wang; Zhong-Jie Li; Yunqing Qiu; Ji-Cheng Li

Background It is very difficult to prevent pulmonary tuberculosis (TB) due to the lack of specific and diagnostic markers, which could lead to a high incidence of pulmonary TB. We screened the differentially expressed serum microRNAs (miRNAs) as potential biomarkers for the diagnosis of pulmonary TB. Methods In this study, serum miRNAs were screened using the Solexa sequencing method as the potential biomarkers for the diagnosis of pulmonary TB. The stem-loop quantitative reverse-transcription polymerase chain reaction (qRT-PCR) assay was used to verify differentially expressed serum miRNAs. The receiver operating characteristic (ROC) curve and logistic regression model were used to analyze the sensitivity and specificity of the single miRNA and a combination of miRNAs for diagnosis, respectively. Using the predicted target genes, we constructed the regulatory networks of miRNAs and genes that were related to pulmonary TB. Results The Solexa sequencing data showed that 91 serum miRNAs were differentially expressed in pulmonary TB patients, compared to healthy controls. Following qRT-PCR confirmation, six serum miRNAs (hsa-miR-378, hsa-miR-483-5p, hsa-miR-22, hsa-miR-29c, hsa-miR-101 and hsa-miR-320b) showed significant difference among pulmonary TB patients, healthy controls (P<0.001) and differential diagnosis groups (including patients with pneumonia, lung cancer and chronic obstructive pulmonary disease) (P<0.05). The logistic regression analysis of a combination of six serum miRNAs revealed that the sensitivity and the specificity of TB diagnosis were 95.0% and 91.8% respectively. The miRNAs-gene regulatory networks revealed that several miRNAs may regulate some target genes involved in immune pathways and participate in the pathogenesis of pulmonary TB. Conclusion Our study suggests that a combination of six serum miRNAs have great potential to serve as non-invasive biomarkers of pulmonary TB.


Proteomics | 2014

Discovery and identification of serum potential biomarkers for pulmonary tuberculosis using iTRAQ‐coupled two‐dimensional LC‐MS/MS

Dandan Xu; Dan-Feng Deng; Xiang Li; Li-Liang Wei; Yanyuan Li; Xiuyun Yang; Wei Yu; Chong Wang; Tingting Jiang; Zhong-Jie Li; Zhong-Liang Chen; Xing Zhang; Jiyan Liu; Ze-Peng Ping; Yunqing Qiu; Ji-Cheng Li

Pulmonary tuberculosis (TB) caused by Mycobacterium tuberculosis is a chronic disease. Currently, there are no sufficiently validated biomarkers for early diagnosis of TB infection. In this study, a panel of potential serum biomarkers was identified between patients with pulmonary TB and healthy controls by using iTRAQ‐coupled 2D LC‐MS/MS technique. Among 100 differentially expressed proteins screened, 45 proteins were upregulated (>1.25‐fold at p < 0.05) and 55 proteins were downregulated (<0.8‐fold at p < 0.05) in the TB serum. Bioinformatics analysis revealed that the differentially expressed proteins were related to the response to stimulus, the metabolic and immune system processes. The significantly differential expression of apolipoprotein CII (APOCII), CD5 antigen‐like (CD5L), hyaluronan‐binding protein 2 (HABP2), and retinol‐binding protein 4 (RBP4) was further confirmed using immunoblotting and ELISA analysis. By forward stepwise multivariate regression analysis, a panel of serum biomarkers including APOCII, CD5L, and RBP4 was obtained to form the disease diagnostic model. The receiver operation characteristic curve of the diagnostic model was 0.98 (sensitivity = 93.42%, specificity = 92.86%). In conclusion, APOCII, CD5L, HABP2, and RBP4 may be potential protein biomarkers of pulmonary TB. Our research provides useful data for early diagnosis of TB.


Proteomics | 2015

Serum protein S100A9, SOD3, and MMP9 as new diagnostic biomarkers for pulmonary tuberculosis by iTRAQ-coupled two-dimensional LC-MS/MS

Dandan Xu; Yanyuan Li; Xiang Li; Li-Liang Wei; Zhi-Fen Pan; Tingting Jiang; Zhong-Liang Chen; Chong Wang; Wen-Ming Cao; Xing Zhang; Ze-Peng Ping; Chang-Ming Liu; Jiyan Liu; Zhong-Jie Li; Li J

This study aimed to discover the novel noninvasive biomarkers for the diagnosis of pulmonary tuberculosis (TB). We applied iTRAQ 2D LC‐MS/MS technique to investigate protein profiles in patients with pulmonary TB and other lung diseases. A total of 34 differentially expressed proteins (24 upregulated proteins and ten downregulated proteins) were identified in the serum of pulmonary TB patients. Significant differences in protein S100‐A9 (S100A9), extracellular superoxide dismutase [Cu‐Zn] (SOD3), and matrix metalloproteinase 9 (MMP9) were found between pulmonary TB and other lung diseases by ELISA. Correlations analysis revealed that the serum concentration of MMP9 in the pulmonary TB was in moderate correlation with SOD3 (r = 0.581) and S100A9 (r = 0.471), while SOD3 was in weak correlation with S100A9 (r = 0.287). The combination of serum S100A9, SOD3, and MMP9 levels could achieve 92.5% sensitivity and 95% specificity to discriminate between pulmonary TB and healthy controls, 90% sensitivity and 87.5% specificity to discriminate between pulmonary TB and pneumonia, and 85% sensitivity and 92.5% specificity to discriminate between pulmonary TB and lung cancer, respectively. The results showed that S100A9, SOD3, and MMP9 may be potential diagnostic biomarkers for pulmonary TB, and provided experimental basis for the diagnosis of pulmonary TB.


International Journal of Biological Sciences | 2012

Polymorphic allele of human MRC1 confer protection against tuberculosis in a Chinese population.

Xing Zhang; Feng Jiang; Li-Liang Wei; Fujian Li; Jiyan Liu; Chong Wang; Menyuan Zhao; Tingting Jiang; Dandan Xu; Dapeng Fan; Xiaojun Sun; Ji-Cheng Li

Mannose receptor is a member of the C-type lectin receptor family involved in pathogen molecular-pattern recognition, and plays a critical role in shaping host immune response. Single nucleotide polymorphisms (SNPs) in the MRC1 gene may affect expression levels and differences in the structure and function of proteins in different individuals, thereby affecting individual susceptibility to pulmonary tuberculosis. However, to date, MRC1 polymorphisms associated with susceptibility to pulmonary tuberculosis have not yet been reported. The present study aimed to investigate potential associations of SNPs in the MRC1 gene with pulmonary tuberculosis in a Chinese population. Six SNPs (G1186A, G1195A, T1212C, C1221G, C1303T and C1323T) in exon 7 of the MRC1 gene were genotyped using the PCR and DNA sequencing methods in the pulmonary tuberculosis patients and the healthy controls. Linkage disequilibrium analysis was performed between polymorphic sites. The study found that the allele frequency of G1186A (rs34039386) of the MRC1 gene in a Chinese population was higher in the pulmonary tuberculosis group than the healthy control group. There was a significant difference in frequency distribution between the two groups (P = 0.037; OR = 0.76; 95% CI, 0.58-0.98). Genotypic analysis also indicated that the AG genotypes in a Chinese population were significantly correlated with pulmonary tuberculosis (P < 0.01; OR = 0.57; 95% CI, 0.37-0.87). After adjustment for age and gender, G1186A sites were found to be dominant (P < 0.01; OR = 0.59; 95% CI, 0.40-0.87), over-dominant (P = 0.045; OR = 0.69; 95% CI, 0.47-0.99) and additive models (P = 0.041; OR = 0.76; 95% CI, 0.59-0.99) in association with pulmonary tuberculosis. But, no association was found between the other 5 SNPs (G1195A, T1212C, C1221G, C1303T and C1323T) and tuberculosis (P > 0.05). This study is the first to report that genetic variants in the MRC1 gene can be associated with pulmonary tuberculosis in a Chinese population, and may reduce the risk of infecting pulmonary tuberculosis. This also provides a new experimental basis to clarify the pathogenesis of pulmonary tuberculosis.


Clinical Chemistry and Laboratory Medicine | 2011

New serum biomarkers for detection of tuberculosis using surface-enhanced laser desorption/ionization time-of-flight mass spectrometry.

Jiyan Liu; Lei Jin; Mengyuan Zhao; Xin Zhang; Chi-Bo Liu; Yu-Xiang Zhang; Fujian Li; Jian-Min Zhou; Hua-Jun Wang; Ji-Cheng Li

Abstract Background: New technologies for the early detection of tuberculosis (TB) are urgently needed. Pathological changes within an organ might be reflected in proteomic patterns in serum. The aim of the present study was to screen for the potential protein biomarkers in serum for the diagnosis of TB using proteomic fingerprint technology. Methods: Proteomic fingerprint technology combining protein chips with surface-enhanced laser desorption/ionization time-of-flight mass spectrometry (SELDI-TOF MS) was used to profile the serum proteins from 50 patients with TB, 25 patients with lung disease other than TB, and 25 healthy volunteers. The protein fingerprint expression of all the serum samples and the resulting profiles between TB and control groups were analyzed with the Biomarker Wizard system. Results: A total of 30 discriminating m/z peaks were detected that were related to TB (p<0.01). The model of biomarkers constructed by the Biomarker Patterns Software based on the three biomarkers (2024, 8007, and 8598 Da) generated excellent separation between the TB and control groups. The sensitivity was 84.0% and the specificity was 86.0%. Blind test data indicated a sensitivity of 80.0% and a specificity of 84.2%. Conclusions: The data suggested a potential application of SELDI-TOF MS as an effective technology to profile serum proteome, and with pattern analysis, a diagnostic model comprising three potential biomarkers was indicated to differentiate people with TB and healthy controls rapidly and precisely.


BMC Infectious Diseases | 2015

Association of the miR-146a, miR-149, miR-196a2 and miR-499 polymorphisms with susceptibility to pulmonary tuberculosis in the Chinese Uygur, Kazak and Southern Han populations

Xing Zhang; Yanyuan Li; Xiang Li; Wanjiang Zhang; Zhi-Fen Pan; Fang Wu; Chong Wang; Zhong-Liang Chen; Tingting Jiang; Dandan Xu; Ze-Peng Ping; Jiyan Liu; Chang-Ming Liu; Zhong-Jie Li; Li J

BackgroundSingle nucleotide polymorphisms (SNPs) within precursor microRNAs (miRNAs) can affect miRNAs expression, and may be involved in the pathogenesis of pulmonary tuberculosis (TB). This study aimed to investigate potential associations between the four precursor miRNA SNPs (miR-146a C > G, miR-149 T > C, miR-196a2 T > C, and miR-499 T > C) and susceptibility to pulmonary TB in the Chinese Uygur, Kazak, and Southern Han populations.MethodsA case-control study was performed on Chinese Uygur (n = 662), Kazak (n = 612), and Southern Han (n = 654) populations using the PCR-PFLR method. The allele and genotype frequencies for all populations were analyzed. Linkage disequilibrium was performed, and different models of inheritance were tested.ResultsThe allele and genotype frequencies of the miR-499 SNP were significantly different between the TB patients group and the healthy control group in the Uygur population, and were found to be codominant, dominant, recessive and additive models in association with pulmonary TB. The haplotype CTCC showed significant correlation with pulmonary TB. The allele and genotype frequencies of miR-146a and miR-196a2 SNPs were significantly different between the two groups in the Kazak population. The miR-146a SNP was found to be codominant, recessive and additive models, whereas, the miR-196a2 SNP was found to be codominant, dominant, and additive models in association with pulmonary TB. The haplotypes TCCC and CCCT showed significant correlation with pulmonary TB.ConclusionsThe results suggested that susceptibility to pulmonary TB may be closely related to individual differences caused by genetic factors among different ethnic groups in China.


BMC Infectious Diseases | 2012

A novel single nucleotide polymorphism within the NOD2 gene is associated with pulmonary tuberculosis in the Chinese Han, Uygur and Kazak populations

Mengyuan Zhao; Feng Jiang; Wanjiang Zhang; Fujian Li; Li-Liang Wei; Jiyan Liu; Yun Xue; Xiling Deng; Fang Wu; Le Zhang; Xing Zhang; Yuxiang Zhang; Dapeng Fan; Xiaojun Sun; Tingting Jiang; Ji-Cheng Li

BackgroundThe present study aimed to investigate the genetic polymorphisms in exon 4 of the NOD2 gene in tuberculosis patients and healthy controls, in order to clarify whether polymorphisms in the NOD2 gene is associated with tuberculosis.MethodsA case-control study was performed on the Chinese Han, Uygur and Kazak populations. Exon 4 of the NOD2 gene was sequenced in 425 TB patients and 380 healthy controls to identify SNPs.ResultsThe frequency of T/G genotypes for the Arg587Arg (CGT → CGG) single nucleotide polymorphism (SNP) in NOD2 was found to be significantly higher in the Uygur (34.9%) and Kazak (37.1%) populations than the Han population (18.6%). Also, the frequency of G/G genotypes for the Arg587Arg SNP was significantly higher in the Uyghur (8.3%) and Kazak (5.4%) populations than the Han population (0.9%). Meanwhile, no significant difference was found in the Arg587Arg polymorphism between the tuberculosis patients and healthy controls in the Uyghur and Kazak populations (P > 0.05) whereas, a significant difference was observed in the Arg587Arg polymorphism between the tuberculosis patients and healthy controls in the Han population (P < 0.01). The odd ratio of 2.16 (95% CI = 1.31-3.58; P < 0.01) indicated that the Arg587Arg SNP in NOD2 may be associated with susceptibility to tuberculosis in the Chinese Han population.ConclusionsOur study is the first to demonstrate that the Arg587Arg SNP in NOD2 is a new possible risk factor for tuberculosis in the Chinese Han population, but not in the Uyghur and Kazak populations. Our results may reflect racial differences in genetic susceptibility to tuberculosis.


Journal of Ethnopharmacology | 2014

Screening and identification of potential biomarkers and establishment of the diagnostic serum proteomic model for the Traditional Chinese Medicine Syndromes of tuberculosis.

Jiyan Liu; Yanyuan Li; Li-Liang Wei; Xiuyun Yang; Zhensheng Xie; Tingting Jiang; Chong Wang; Xing Zhang; Dandan Xu; Zhong-Liang Chen; Fuquan Yang; Ji-Cheng Li

ETHNOPHARMACOLOGICAL RELEVANCE Chemotherapy is the mainstay of modern tuberculosis (TB) control. Traditional Chinese Medicine (TCM) can enhance the effect of anti-TB drug, promote the absorption of the foci in the lung and reduce drug toxicity. In TCM, the determination of treatment is based on ZHENG (also called TCM syndrome). To establish a diagnostic model by using proteomics technology in order to identify potential biomarkers for TCM syndromes of TB. MATERIALS AND METHODS The surface-enhanced laser desorption ionization time of flight mass spectrometer (SELDI-TOF MS) combined with weak cation exchange (WCX) magnetic beads was used to screen serum samples from 71 cases of deficiency of lung yin syndrome (DLYS), 64 cases of fire (yang) excess yin deficiency syndrome (FEYDS) and 45 cases of deficiency of both qi and yin syndrome (DQYS). A classification model was established by Biomarker Pattern Software (BPS). Candidate protein biomarkers were purified by reverse phase-high performance liquid chromatograph (RP-HPLC), identified by MALDI-TOF MS, LC-MS/MS and validated by ProteinChip Immunoassays. RESULTS A total of 74 discriminating m/z peaks (P<0.001) among three TCM syndromes of TB were detected. A diagnostic model for the TCM syndrome of TB based on the five biomarkers (3961.7, 4679.7, 5646.4, 8891.2 and 9416.7 m/z) was established which could discriminate DLYS, FEYDS and DQYS patients with an accuracy of 74.0%, 72.5%, and 96.7%, respectively. The candidate biomarker with m/z of 9416.7 was identified as a fragment of apolipoprotein C-III (apoC-III) by MALDI-TOF-MS and LC-MS/MS. CONCLUSION The TCM syndrome diagnostic model of TB could successfully distinguish the three TCM syndromes of TB patients. This provided a biological basis for the determination of treatment based on different TCM syndromes of TB. ApoC-III was identified as a potential biomarker for TCM syndromes of TB and revealed the biochemical basis and pathogenesis of TCM syndromes in TB.


International Journal of Biological Sciences | 2012

Association of CTLA4 gene polymorphisms with susceptibility and pathology correlation to pulmonary tuberculosis in Southern Han Chinese.

Chong Wang; Tingting Jiang; Li-Liang Wei; Fujian Li; Xiaojun Sun; Dapeng Fan; Jiyan Liu; Xing Zhang; Dandan Xu; Zhong-Liang Chen; Zhong-Jie Li; Xiaoyan Fu; Ji-Cheng Li

The cytotoxic T lymphocyte antigen-4 (CTLA4) gene is a key negative regulator of the T lymphocyte immune response. It has been found that CTLA4 +49A>G (rs231775), +6230G>A (rs3087243), and 11430G>A (rs11571319) polymorphisms are associated with susceptibility to many autoimmune diseases, and can down-regulate the inhibition of cellular immune response of CTLA4. Three SNPs in CTLA4 were genotyped by using the PCR and DNA sequencing methods in order to reveal the susceptibility and pathology correlation to pulmonary tuberculosis in Southern Han Chinese. We found that the frequency of CTLA4 +49AG genotype in the pulmonary tuberculosis patients (38.42%) was significantly lower than that of the healthy controls (49.77%), (Pcor=0.038, OR 0.653, 95% CI 0.436-0.978). But, no associations were found between the other 2 SNPs (+6230G>A, 11430G>A) and tuberculosis (P>0.05). Haplotype analysis showed that the frequency of haplotype AGG in the healthy controls group (6.9%) was significantly higher than the pulmonary tuberculosis patients group (1.4%), (global P=0.005, Pcor=0.0002, OR 0.183, 95% CI 0.072-0.468). In addition, haplotype GGA was found to be significantly related to tuberculosis with double lung lesion rather than single lung lesion (Pcor=0.042). This study is the first to report that genetic variants in the CTLA4 gene can be associated with pulmonary tuberculosis in Southern Han Chinese, and CTLA4 +49AG genotype as well as haplotype AGG may reduce the risk of being infected with pulmonary tuberculosis. The GGA haplotype was related to tuberculosis with double lung lesion, which provides a new experimental basis to clarify the pathogenesis of pulmonary tuberculosis.

Collaboration


Dive into the Jiyan Liu's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge