Jiye Wang
Fourth Military Medical University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jiye Wang.
Neurotoxicology | 2012
Jinfei Jing; Gang Zheng; Mingchao Liu; Xuefeng Shen; Fang Zhao; Jiye Wang; Jianbin Zhang; Guanpeng Huang; Peng Dai; Yinglei Chen; Jingyuan Chen; Wenjing Luo
Many epidemiological studies and in vitro experiments have found that chronic arsenic exposure may influence memory formation. The goal of this study was to create an animal model of memory impairment induced by chronic arsenite exposure and to study the underlying mechanisms. Sixty male Sprague-Dawley (SD) male rats were randomly divided into a control group, a low-dose sodium arsenite exposure group and a high-dose sodium arsenite exposure group. Sodium arsenite was administered by adding it to drinking water for 3 months. Then, the spatial memory of the rats was examined with Morris water maze and Y maze. The concentration of arsenic in the blood and the brain was determined by an atomic fluorescence absorption spectrometer. The ultra-structure of hippocampal neurons was observed by an electron microscope. Timm staining was used for observing mossy fibers. We found that the concentration of arsenic in the blood and the brain increased in a dose-response manner (P<0.05). The performance of rats in the arsenite exposed group (15 mg/kg) was significantly impaired in the Morris water maze and Y maze tasks than those in the control group (P<0.05). Sodium arsenite exposure resulted in abnormal structural changes in the myelin sheaths of nerve fibers and decreases in the terminals of mossy fibers. Together, chronic sodium arsenite exposure through drinking water results in detrimental changes in the neuronal synapses, which may contribute to the arsenite-induced impairment of spatial memory.
Neurotoxicology and Teratology | 2013
Jiye Wang; Tao Ke; Xiangnan Zhang; Yaoming Chen; Mingchao Liu; Jingyuan Chen; Wenjing Luo
High-altitude hypoxia impedes cognitive performance. It is not well known whether the prophylactic use of acetazolamide for altitude sickness can influence cognitive performance at high altitude. When ascending to high altitude locations, one may face medical risks, including cognitive impairment, which may significantly hinder climbing abilities or exploratory behavior. Effective prophylactic drugs have rarely been reported. Because acetazolamide is commonly used to treat acute mountain sickness (AMS), we assessed the potential effects of acetazolamide on cognitive performance during high-altitude exposure. Twenty-one volunteers aged 22-26 years were randomized to receive a 4-day treatment of acetazolamide (125 mg Bid, n=11) or placebo (n=10) before and after air travel from Xianyang (402 m) to Lhasa (3561 m). Neuropsychological performance was assessed using the digit symbol substitution test (DSST), paced auditory serial addition test (PASAT), operation span task, and free recall test at 6, 30, and 54 h after arrival at Lhasa. The Lake Louise Score (LLS) was used to diagnose AMS. At high altitude, acetazolamide impaired rather than improved neuropsychological measures of concentration, cognitive processing speed, reaction time, short-term memory, and working memory, which were assessed by DSST, PASAT, and operation span task at 6 and 30 h after arrival (p<0.05). However, the prophylactic use of acetazolamide was found to reduce the incidence of AMS compared to the placebo (p<0.05). In conclusion, acetazolamide impairs neuropsychological function, at least in part, shortly after the ascent to high altitude.
Stress | 2015
Mingchao Liu; Juan Li; Peng Dai; Fang Zhao; Gang Zheng; Jinfei Jing; Jiye Wang; Wenjing Luo; Jingyuan Chen
Abstract Chronic stress is considered to be a major risk factor in the development of psychopathological syndromes in humans. Cognitive impairments and long-term potentiation (LTP) impairments are increasingly recognized as major components of depression, anxiety disorders and other stress-related chronic psychological illnesses. It seems timely to systematically study the potentially underlying neurobiological mechanisms of altered cognitive and synaptic plasticity in the course of chronic stress. In the present study, a rat model of chronic unpredictable stress (CUS) induced a cognitive impairment in spatial memory in the Morris water maze (MWM) test and a hippocampal LTP impairment. CUS also induced hippocampal microglial activation and attenuated phosphorylation of glutamate receptor 1 (GluR1 or GluA1). Moreover, chronic treatment with the selective microglial activation blocker, minocycline (120u2009mg/kg per day), beginning 3u2009d before CUS treatment and continuing through the behavioral testing period, prevented the CUS-induced impairments of spatial memory and LTP induction. Additional studies showed that minocycline-induced inhibition of microglia activation was associated with increased phosphorylation of GluR1. These results suggest that hippocampal microglial activation modulates the level of GluR1 phosphorylation and might play a causal role in CUS-induced cognitive and LTP disturbances.
High Altitude Medicine & Biology | 2013
Tao Ke; Jiye Wang; Erik R. Swenson; Xiangnan Zhang; Yunlong Hu; Yaoming Chen; Mingchao Liu; Wenbin Zhang; Feng Zhao; Xuefeng Shen; Qun Yang; Jingyuan Chen; Wenjing Luo
Acetazolamide and gingko biloba are the two most investigated drugs for the prevention of acute mountain sickness (AMS). Evidence suggests that they may also reduce pulmonary artery systolic pressure (PASP). To investigate whether these two drugs for AMS prevention also reduce PASP with rapid airlift ascent to high altitude, a randomized controlled trial was conducted on 28 healthy young men with acetazolamide (125u2009mg bid), gingko biloba (120u2009mg bid), or placebo for 3 days prior to airlift ascent (397u2009m) and for the first 3 days at high altitude (3658u2009m). PASP, AMS, arterial oxygen saturation (Sao2), mean arterial pressure (MAP), heart rate (HR), forced vital capacity (FVC), forced expiratory volume in the first second (FEV1), and peak expiratory flow (PEF) were assessed both at 397u2009m and 3658u2009m. HR, PEF, and PASP increased with altitude exposure (p<0.05), and SaO2 decreased (p<0.05). PASP with acetazolamide (mean at 3658u2009m, 26.2u2009mm Hg; incremental change, 4.7u2009mm Hg, 95% CI., 2.6-6.9u2009mm Hg) was lower than that with ginkgo biloba (mean at 3658u2009m, 33.7u2009mm Hg, p=0.001; incremental change, 13.1u2009mm Hg, 95%CI., 9.6-16.5u2009mm Hg, p=0.002), and with placebo (mean at 3658u2009m, 34.7u2009mm Hg, p<0.001; 14.4u2009mm Hg, 95% CI., 8.8-20.0u2009mm Hg, p=0.001). The data show that a low prophylactic dosage of acetazolamide, but not gingko biloba, mitigates the early increase of PASP in a quick ascent profile.
International Journal of Biological Sciences | 2015
Xiaohui Wang; Honglei Che; Wenbin Zhang; Jiye Wang; Tao Ke; Rui Cao; Shanshan Meng; Dan Li; Ouyang Weiming; Jingyuan Chen; Wenjing Luo
Cold adaptation is a bodys protective response to cold stress. Mild chronic intermittent cold (CIC) exposure has been used to generate animal models for cold adaptation studies. However, the effects of mild CIC exposure on vital organs are not completely characterized. In the present study, we exposed rats to mild CIC for two weeks, and then measured the body weights, the weights of brown adipose tissue (BAT), the levels of ATP and reactive oxygen species (ROS) in the brains, livers, hearts, muscles and BATs. Rats formed cold adaptation after exposure to CIC for two weeks. Compared to rats of the control group that were hosted under ambient temperature, rats exposed to mild CIC showed a lower average body weight, but a higher weight of brown adipose tissue (BAT). Rats exposed to CIC for two weeks also exhibited higher levels of ATP and ROS in all examined organs as compared to those of the control group. In addition, we determined the expression levels of cold-inducible RNA binding protein (Cirbp) and thioredoxin (TRX) in rat tissues after 2 weeks of CIC exposure. Both Cirbp and TRX were increased, suggesting a role of these two proteins for establishment of cold adaptation. Together, this study reveals the effects of mild CIC exposure on vital organs of rats during CIC exposure.
International Journal of Biological Sciences | 2013
Jiye Wang; Yaoming Chen; Wenbin Zhang; Gang Zheng; Shanshan Meng; Honglei Che; Tao Ke; Jingrun Yang; Jingyuan Chen; Wenjing Luo
Accidental deaths due to exposure to extremely low natural temperature happen every winter. Exposure to extreme cold causes injury of multiple organs. However, early responses of the bodies to acute extreme cold exposure remain incompletely understood. In this study, we found that hepatic glycogen was rapidly reduced in rats exposed to -15°C, and the key enzymes required for glycogenesis were upregulated in the livers of the cold-exposed rats. In line with the rapid consumption of glycogen, acute cold exposure induced a transient elevation of cellular ATP level, which lasted about one hour. The ATP level went back to basal level after two hours of cold exposure. Four hours of cold exposure resulted in cellular ATP depletion and cell apoptosis. The dynamic change of cellular ATP levels was well associated with Akt activation in cold-exposed liver cells. The activation of Akt was required for cold exposure-induced ATP elevation. Blockade of Akt activation diminished the transient increase of intracellular ATP content and exacerbated cell apoptosis during acute cold exposure. These results suggest that Akt activation plays a pivotal role in maintaining cellular bioenergy balance and promoting liver cell survival during acute cold exposure.
Molecular Neurobiology | 2017
Qian Zhang; Ya-Zhou Wang; Wenbin Zhang; Xiaoming Chen; Jiye Wang; Jingyuan Chen; Wenjing Luo
Neonatal hypoxia is the leading cause of brain damage with birth complications. Many studies have reported proliferation-promoting effect of mild hypoxia on neural stem cells (NSCs). However, how severe hypoxia influences the behavior of NSCs has been poorly explored. In the present study, we investigated the effects of 5, 3, and 1xa0% oxygen exposure on NSCs in vitro. MTT, neurosphere assay, and 5-ethynyl-2′-deoxyuridine (EdU) incorporation revealed a quick growth arrest of C17.2 cells and primary NSCs induced by 1xa0% oxygen exposure. Cell cycle analysis showed that this hypoxia exposure caused a significant increase of cells in G0/G1 phase and decrease of cells in S phase that is associated with decrease of Cyclin D1. Interestingly, the expression of cold inducible RNA-binding protein (CIRBP), a cold responsive gene reacting to multiple cellular stresses, was decreased in parallel with the 1xa0% oxygen-induced proliferation inhibition. Forced expression of CIRBP under hypoxia could restore the proliferation of NSCs, as showed by EdU incorporation and cell cycle analysis. Furthermore, the expression of Cyclin D1 under hypoxia was also restored by CIRBP overexpression. Taken together, these data suggested a growth-suppressing effect of severe hypoxia on NSCs and, for the first time, revealed a novel role of CIRBP in hypoxia-induced cell cycle arrest, suggesting that modulating CIRBP may be utilized for preventing hypoxia-induced neonatal brain injury.
Neurotoxicology | 2016
Xuefeng Shen; Ping Huang; Donald A. Fox; Yan Lin; Zai-Hua Zhao; Wen Wang; Jiye Wang; Xinqin Liu; Jingyuan Chen; Wenjing Luo
Low-to-moderate level developmental and adult lead exposure produces retinal dysfunction and/or degeneration in humans and experimental animals. Although high level in vivo or in vitro lead disrupts blood-brain-barrier tight junctions and increases its permeability, the blood-retinal-barrier (BRB) has not been examined. There were four overall goals. First, generate environmentally relevant dose-response models of short-term lead exposure in adult rats. Second, assess retinal histology and functional integrity of the BRB. Third, investigate the transmembrane proteins occludin and claudin-5 as targets mediating the increased BRB permeability. Fourth, examine the contribution of the PI3K-Akt signaling pathway as a mechanism underlying increased BRB permeability. Young adult rats were given water, 0.01% or 0.02% lead drinking solutions for six weeks. In control, 0.01% and 0.02% groups the six week mean blood [Pb] were 1, 12.5 and 19μg/dl, respectively. We employed histology, stereology, quantitative image analysis, immunoblots and densitometry, and pharmacology techniques. Major findings were that adult lead exposure produced dose-dependent 1) decreases in outer and inner nuclear layer thickness, 2) increases in BRB permeability, 3) decreases in occludin and claudin-5 expression, 4) increases in pAkt (Ser473), but not pAkt (Thr308), expression, and 5) wortmannin partially or completely blocked the increased BRB permeability and changes in protein expression. These results indicate that lead-induced increases in PI3K-Akt signaling partially underlie the increased BRB permeability and advance our knowledge about lead-induced retinotoxicity. Furthermore, they suggest that environmental and occupational lead exposures are risk factors for increased BRB permeability in diseases such as age-related macular degeneration, diabetes and stroke.
International Journal of Biological Sciences | 2017
Xiaoming Chen; Xinqin Liu; Bin Li; Qian Zhang; Jiye Wang; Wenbin Zhang; Wenjing Luo; Jingyuan Chen
Background: Neuron apoptosis mediated by hypoxia inducible factor 1α (HIF-1α) in hippocampus is one of the most important factors accounting for the chronic hypobaric hypoxia induced cognitive impairment. As a neuroprotective molecule that is up-regulated in response to various environmental stress, CIRBP was reported to crosstalk with HIF-1α under cellular stress. However, its function under chronic hypobaric hypoxia remains unknown. Objective: In this study, we tried to identify the role of CIRBP in HIF-1α mediated neuron apoptosis under chronic hypobaric hypoxia and find a possible method to maintain its potential neuroprotective in long-term high altitude environmental exposure. Methods: We established a chronic hypobaric hypoxia rat model as well as a tissue culture model where SH-SY5Y cells were exposed to 1% hypoxia. Based on these models, we measured the expressions of HIF-1α and CIRBP under hypoxia exposure and examined the apoptosis of neurons by TUNEL immunofluorescence staining and western blot analysis of apoptosis related proteins. In addition, by establishing HIF-1α shRNA and pEGFP-CIRBP plasmid transfected cells, we confirmed the role of HIF-1α in chronic hypoxia induced neuron apoptosis and identified the influence of CIRBP over-expression upon HIF-1α and neuron apoptosis in the process of exposure. Furthermore, we measured the expression of the reported hypoxia related miRNAs in both models and the influence of miRNAs over-expression/knock-down upon CIRBP in the process of HIF-1α mediated neuron apoptosis. Results: HIF-1α expression as well as neuron apoptosis was significantly elevated by chronic hypobaric hypoxia both in vivo and in vitro. CIRBP was induced in the early stage of exposure (3d/7d); however as the exposure was prolonged (21d), CIRBP level of the hypoxia group became significantly lower than that of control. In addition, HIF-1α knockdown significantly decreased neuron apoptosis under hypoxia, suggesting HIF-1α may be pro-apoptotic in the process of exposure. CIRBP over-expression significantly suppressed HIF-1α up-regulation in hypoxia and inhibited HIF-1α mediated neuron apoptosis. Interestingly, miR-23a was also induced by hypoxia exposure and showed the same changing tendency with CIRBP (increasing in 3d/7d, decreasing in 21d). In addition, over-expressing miR-23a up-regulated CIRBP, down-regulated HIF-1α and attenuated neuron apoptosis. Conclusion: Cold inducible RNA binding protein is involved in chronic hypoxia induced neuron apoptosis by down-regulating HIF-1α expression, and MiR-23a may be an important tool to maintain CIRBP level and function.
Human Brain Mapping | 2017
Xiaoming Chen; Qian Zhang; Jiye Wang; Jie Liu; Wenbin Zhang; Shun Qi; Hui Xu; Chen Li; Zhang J; Haitao Zhao; Shanshan Meng; Dan Li; Huanyu Lu; Michael Aschner; Bin Li; Hong Yin; Jingyuan Chen; Wenjing Luo
Cognitive and neuroimaging changes under chronic high‐altitude exposure have never been followed up and dynamically assessed.