Jo Ann V. Antenor-Dorsey
Washington University in St. Louis
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jo Ann V. Antenor-Dorsey.
Proceedings of the National Academy of Sciences of the United States of America | 2007
William J. Powers; Tom O. Videen; Joanne Markham; Lori McGee-Minnich; Jo Ann V. Antenor-Dorsey; Tamara Hershey; Joel S. Perlmutter
Activity of complexes II, III, and IV of the mitochondrial electron transport system (ETS) is reduced in postmortem Huntingtons disease (HD) striatum, suggesting that reduced cerebral oxidative phosphorylation may be important in the pathogenesis of neuronal death. We investigated mitochondrial oxidative metabolism in vivo in the striatum of 20 participants with early, genetically proven HD and 15 age-matched normal controls by direct measurements of the molar ratio of cerebral oxygen metabolism to cerebral glucose metabolism (CMRO2/CMRglc) with positron emission tomography. There was a significant increase in striatal CMRO2/CMRglc in HD rather than the decrease characteristic of defects in mitochondrial oxidative metabolism (6.0 ± 1.6 vs. 5.1 ± 0.9, P = 0.04). CMRO2 was not different from controls (126 ± 37 vs. 134 ± 31 μmol 100 g−1 min−1, P = 0.49), whereas CMRglc was decreased (21.6 ± 6.1 vs. 26.4 ± 4.6 μmol 100 g−1 min−1, P = 0.01). Striatal volume was decreased as well (13.9 ± 3.5 vs. 17.6 ± 2.0 ml, P = 0.001). Increased striatal CMRO2/CMRglc with unchanged CMRO2 is inconsistent with a defect in mitochondrial oxidative phosphorylation due to reduced activity of the mitochondrial ETS. Because HD pathology was already manifest by striatal atrophy, deficient energy production due to a reduced activity of the mitochondrial ETS is not important in the mechanism of neuronal death in early HD. Because glycolytic metabolism is predominantly astrocytic, the selective reduction in striatal CMRglc raises the possibility that astrocyte dysfunction may be involved in the pathogenesis of HD.
The Journal of Neuroscience | 2011
Jeong Sook Kim-Han; Jo Ann V. Antenor-Dorsey; Karen L. O'Malley
Impaired axonal transport may play a key role in Parkinsons disease. To test this notion, a microchamber system was adapted to segregate axons from cell bodies using green fluorescent protein-labeled mouse dopamine (DA) neurons. Transport was examined in axons challenged with the DA neurotoxin, 1-methyl-4-phenylpyridinium ion (MPP+). MPP+ rapidly reduced overall mitochondrial motility in DA axons; among motile mitochondria, anterograde transport was slower yet retrograde transport was increased. Transport effects were specific for DA mitochondria, which were smaller and transported more slowly than their non-DA counterparts. MPP+ did not affect synaptophysin-tagged vesicles or any other measureable moving particle. Toxin effects on DA mitochondria were not dependent upon ATP, calcium, free radical species, JNK, or caspase3/PKC pathways but were completely blocked by the thiol-anti-oxidant N-acetyl-cysteine or membrane-permeable glutathione. Since these drugs also rescued processes from degeneration, these findings emphasize the need to develop therapeutics aimed at axons as well as cell bodies to preserve “normal” circuitry and function as long as possible.
Diabetes | 2013
Jo Ann V. Antenor-Dorsey; Erin Meyer; Jerrel Rutlin; Dana C. Perantie; Neil H. White; Ana Maria Arbelaez; Joshua S. Shimony; Tamara Hershey
Decreased white and gray matter volumes have been reported in youth with type 1 diabetes mellitus (T1DM), but the effects of hyperglycemia on white matter integrity have not been quantitatively assessed during brain development. We performed diffusion tensor imaging, using two complimentary approaches—region-of-interest and voxelwise tract-based spatial statistics—to quantify white matter integrity in a large retrospective study of T1DM youth and control participants. Exposure to chronic hyperglycemia, severe hyperglycemic episodes, and severe hypoglycemia, as defined in the Diabetes Control and Complications Trial (DCCT), were estimated through medical records review, HbA1c levels, and interview of parents and youth. We found lower fractional anisotropy in the superior parietal lobule and reduced mean diffusivity in the thalamus in the T1DM group. A history of three or more severe hyperglycemic episodes was associated with reduced anisotropy and increased diffusivity in the superior parietal lobule and increased diffusivity in the hippocampus. These results add microstructural integrity of white matter to the range of structural brain alterations seen in T1DM youth and suggest vulnerability of the superior parietal lobule, hippocampus, and thalamus to glycemic extremes during brain development. Longitudinal analyses will be necessary to determine how these alterations change with age or additional glycemic exposure.
Synapse | 2013
Sarah A. Eisenstein; Jo Ann V. Antenor-Dorsey; Danuta M. Gredysa; Jonathan M. Koller; Emily C. Bihun; Samantha Ranck; Ana Maria Arbelaez; Samuel Klein; Joel S. Perlmutter; Stephen M. Moerlein; Kevin J. Black; Tamara Hershey
Previous PET imaging studies have demonstrated mixed findings regarding dopamine D2/D3 receptor availability in obese relative to nonobese humans. Nonspecific D2/D3 radioligands do not allow for separate estimation of D2 receptor (D2R) and D3 receptor (D3R) subtypes of the D2 receptor family, which may play different roles in behavior and are distributed differently throughout the brain. These radioligands are also displaceable by endogenous dopamine, confounding interpretation of differences in receptor availability with differing levels of dopamine release. The present study used PET imaging with the D2R‐selective radioligand (N‐[11C] methyl)benperidol ([11C]NMB), which is nondisplaceable by endogenous dopamine, to estimate D2R specific binding (BPND) and its relationship to body mass index (BMI) and age in 15 normal‐weight (mean BMI = 22.6 kg/m2) and 15 obese (mean BMI = 40.3 kg/m2) men and women. Subjects with illnesses or taking medications that interfere with dopamine signaling were excluded. Striatal D2R BPND was calculated using the Logan graphical method with cerebellum as a reference region. D2R BPND estimates were higher in putamen and caudate relative to nucleus accumbens, but did not differ between normal‐weight and obese groups. BMI values did not correlate with D2R BPND. Age was negatively correlated with putamen D2R BPND in both groups. These results suggest that altered D2R specific binding is not involved in the pathogenesis of obesity per se and underscore the need for additional studies evaluating the relationship between D3R, dopamine reuptake, or endogenous dopamine release and human obesity. Synapse 67:748–756, 2013..
Molecular Genetics and Metabolism | 2013
Jo Ann V. Antenor-Dorsey; Tamara Hershey; Jerrel Rutlin; Joshua S. Shimony; Robert C. McKinstry; Dorothy K. Grange; Shawn E. Christ; Desirée A. White
Previous studies have revealed white matter abnormalities in the brains of individuals with phenylketonuria (PKU), but the microstructural nature of these abnormalities and their relationship to phenylalanine (Phe) levels and cognitive outcomes are poorly understood. In the current study, the microstructural integrity of white matter in 29 individuals with early-treated PKU and 12 healthy controls was examined using two complementary diffusion tensor imaging (DTI) approaches: region-of-interest (ROI) based analysis and voxel-wise tract based spatial statistics (TBSS) analysis. Relationships among DTI, executive abilities, and Phe level findings were explored. DTI revealed widespread lowering of mean diffusivity (MD) in the white matter of the PKU group in comparison with the control group. Executive abilities were also poorer for individuals with PKU than controls. Within the PKU group, lower MD was associated with higher Phe level and poorer executive abilities. These findings are the first to demonstrate the interplay among microstructural white matter integrity, executive abilities, and Phe control in individuals with PKU.
Synapse | 2012
Sarah A. Eisenstein; Jon M. Koller; Marilyn L. Piccirillo; Ana Kim; Jo Ann V. Antenor-Dorsey; Tom O. Videen; Abraham Z. Snyder; Morvarid Karimi; Stephen M. Moerlein; Kevin J. Black; Joel S. Perlmutter; Tamara Hershey
PET imaging studies of the role of the dopamine D2 receptor family in movement and neuropsychiatric disorders are limited by the use of radioligands that have near‐equal affinities for D2 and D3 receptor subtypes and are susceptible to competition with endogenous dopamine. By contrast, the radioligand [18F]N‐methylbenperidol ([18F]NMB) has high selectivity and affinity for the D2 receptor subtype (D2R) and is not sensitive to endogenous dopamine. Although [18F]NMB has high binding levels in striatum, its utility for measuring D2R in extrastriatal regions is unknown. A composite MR‐PET image was constructed across 14 healthy adult participants representing average NMB uptake 60 to 120 min after [18F]NMB injection. Regional peak radioactivity was identified using a peak‐finding algorithm. FreeSurfer and manual tracing identified a priori regions of interest (ROI) on each individuals MR image and tissue activity curves were extracted from coregistered PET images. [18F]NMB binding potentials (BPNDs) were calculated using the Logan graphical method with cerebellum as reference region. In eight unique participants, extrastriatal BPND estimates were compared between Logan graphical methods and a three‐compartment kinetic tracer model. Radioactivity and BPND levels were highest in striatum, lower in extrastriatal subcortical regions, and lowest in cortical regions relative to cerebellum. Age negatively correlated with striatal BPNDs. BPND estimates for extrastriatal ROIs were highly correlated across kinetic and graphical methods. Our findings indicate that PET with [18F]NMB measures specific binding in extrastriatal regions, making it a viable radioligand to study extrastriatal D2R levels in healthy and diseased states. Synapse 66:770–780, 2012.
Molecular Genetics and Metabolism | 2013
Desirée A. White; Jo Ann V. Antenor-Dorsey; Dorothy K. Grange; Tamara Hershey; Jerrel Rutlin; Joshua S. Shimony; Robert C. McKinstry; Shawn E. Christ
Tetrahydrobiopterin (BH(4)) lowers blood phenylalanine (Phe) in individuals with PKU who are responders, but its effects on the brain and cognition have not been explored thoroughly. We examined blood Phe, microstructural white matter integrity, and executive abilities in 12 BH(4) responders before (i.e., baseline) and after (i.e., follow-up) six months of treatment with BH(4). Compared with baseline, Phe in these responders decreased by 51% during a 4 week screening period after initiation of treatment and remained lowered by 37% over the 6 month follow-up period. Significant improvements in white matter integrity, evaluated by mean diffusivity from diffusion tensor imaging, were also found following six months of treatment. Improvements in executive abilities were not identified, although six months may have been a period too brief for changes in cognition to follow changes in the brain. To our knowledge, our study is the first to explore relationships among Phe, white matter integrity, executive abilities, and BH(4) treatment within a single study.
Molecular Genetics and Metabolism | 2015
Anna Hood; Jo Ann V. Antenor-Dorsey; Jerrel Rutlin; Tamara Hershey; Joshua S. Shimony; Robert C. McKinstry; Dorothy K. Grange; Shawn E. Christ; Robert D. Steiner; Desirée A. White
In this study, we retrospectively examined the microstructural white matter integrity of children with early- and continuously-treated PKU (N=36) in relation to multiple indices of phenylalanine (Phe) control over the lifetime. White matter integrity was assessed using mean diffusivity (MD) from diffusion tensor imaging (DTI). Eight lifetime indices of Phe control were computed to reflect average Phe (mean, index of dietary control), variability in Phe (standard deviation, standard error of estimate, % spikes), change in Phe with age (slope), and prolonged exposure to Phe (mean exposure, standard deviation exposure). Of these indices, mean Phe, mean exposure, and standard deviation exposure were the most powerful predictors of widespread microstructural white matter integrity compromise. Findings from the two previously unexamined exposure indices reflected the accumulative effects of elevations and variability in Phe. Given that prolonged exposure to elevated and variable Phe was particularly detrimental to white matter integrity, Phe should be carefully monitored and controlled throughout childhood, without liberalization of Phe control as children with PKU age.
Scientific Reports | 2015
Sarah A. Eisenstein; Allison Bischoff; Danuta M. Gredysa; Jo Ann V. Antenor-Dorsey; Jonathan M. Koller; Amal Al-Lozi; Marta Yanina Pepino; Samuel Klein; Joel S. Perlmutter; Stephen M. Moerlein; Kevin J. Black; Tamara Hershey
PET studies have provided mixed evidence regarding central D2/D3 dopamine receptor binding and its relationship with obesity as measured by body mass index (BMI). Other aspects of obesity may be more tightly coupled to the dopaminergic system. We characterized obesity-associated behaviors and determined if these related to central D2 receptor (D2R) specific binding independent of BMI. Twenty-two obese and 17 normal-weight participants completed eating- and reward-related questionnaires and underwent PET scans using the D2R-selective and nondisplaceable radioligand (N-[11C]methyl)benperidol. Questionnaires were grouped by domain (eating related to emotion, eating related to reward, non-eating behavior motivated by reward or sensitivity to punishment). Normalized, summed scores for each domain were compared between obese and normal-weight groups and correlated with striatal and midbrain D2R binding. Compared to normal-weight individuals, the obese group self-reported higher rates of eating related to both emotion and reward (p < 0.001), greater sensitivity to punishment (p = 0.06), and lower non-food reward behavior (p < 0.01). Across normal-weight and obese participants, self-reported emotional eating and non-food reward behavior positively correlated with striatal (p < 0.05) and midbrain (p < 0.05) D2R binding, respectively. In conclusion, an emotional eating phenotype may reflect altered central D2R function better than other commonly used obesity-related measures such as BMI.
Nuclear Medicine and Biology | 2008
Jo Ann V. Antenor-Dorsey; Joanne Markham; Stephen M. Moerlein; Tom O. Videen; Joel S. Perlmutter
Positron emission tomography measurements of dopaminergic D2-like receptors may provide important insights into disorders such as Parkinsons disease, schizophrenia, dystonia and Tourettes syndrome. The positron emission tomography (PET) radioligand [18F](N-methyl)benperidol ([18F]NMB) has high affinity and selectivity for D2-like receptors and is not displaced by endogenous dopamine. The goal of this study is to evaluate the use of a graphical method utilizing a reference tissue region for [18F]-NMB PET analysis by comparisons to an explicit three-compartment tracer kinetic model and graphical method that use arterial blood measurements. We estimated binding potential (BP) in the caudate and putamen using all three methods in 16 humans and found that the three-compartment tracer kinetic method provided the highest BP estimates while the graphical method using a reference region yielded the lowest estimates (P<.0001 by repeated-measures ANOVA). However, the three methods yielded highly correlated BP estimates for the two regions of interest. We conclude that the graphical method using a reference region still provides a useful estimate of BP comparable to methods using arterial blood sampling, especially since the reference region method is less invasive and computationally more straightforward, thereby simplifying these measurements.