Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jo Ann W. Byl is active.

Publication


Featured researches published by Jo Ann W. Byl.


PLOS ONE | 2010

Voreloxin Is an Anticancer Quinolone Derivative that Intercalates DNA and Poisons Topoisomerase II

Rachael E. Hawtin; David E. Stockett; Jo Ann W. Byl; Robert S. McDowell; Nguyen Tan; Michelle R. Arkin; Andrew Conroy; Wenjin Yang; Neil Osheroff; Judith A. Fox

Background Topoisomerase II is critical for DNA replication, transcription and chromosome segregation and is a well validated target of anti-neoplastic drugs including the anthracyclines and epipodophyllotoxins. However, these drugs are limited by common tumor resistance mechanisms and side-effect profiles. Novel topoisomerase II-targeting agents may benefit patients who prove resistant to currently available topoisomerase II-targeting drugs or encounter unacceptable toxicities. Voreloxin is an anticancer quinolone derivative, a chemical scaffold not used previously for cancer treatment. Voreloxin is completing Phase 2 clinical trials in acute myeloid leukemia and platinum-resistant ovarian cancer. This study defined voreloxins anticancer mechanism of action as a critical component of rational clinical development informed by translational research. Methods/Principal Findings Biochemical and cell-based studies established that voreloxin intercalates DNA and poisons topoisomerase II, causing DNA double-strand breaks, G2 arrest, and apoptosis. Voreloxin is differentiated both structurally and mechanistically from other topoisomerase II poisons currently in use as chemotherapeutics. In cell-based studies, voreloxin poisoned topoisomerase II and caused dose-dependent, site-selective DNA fragmentation analogous to that of quinolone antibacterials in prokaryotes; in contrast etoposide, the nonintercalating epipodophyllotoxin topoisomerase II poison, caused extensive DNA fragmentation. Etoposides activity was highly dependent on topoisomerase II while voreloxin and the intercalating anthracycline topoisomerase II poison, doxorubicin, had comparable dependence on this enzyme for inducing G2 arrest. Mechanistic interrogation with voreloxin analogs revealed that intercalation is required for voreloxins activity; a nonintercalating analog did not inhibit proliferation or induce G2 arrest, while an analog with enhanced intercalation was 9.5-fold more potent. Conclusions/Significance As a first-in-class anticancer quinolone derivative, voreloxin is a toposiomerase II-targeting agent with a unique mechanistic signature. A detailed understanding of voreloxins molecular mechanism, in combination with its evolving clinical profile, may advance our understanding of structure-activity relationships to develop safer and more effective topoisomerase II-targeted therapies for the treatment of cancer.


Proceedings of the National Academy of Sciences of the United States of America | 2012

DNA cleavage and opening reactions of human topoisomerase IIα are regulated via Mg2+-mediated dynamic bending of gate-DNA

Sanghwa Lee; Seung-Ryoung Jung; Kang Heo; Jo Ann W. Byl; Joseph E. Deweese; Neil Osheroff; Sungchul Hohng

Topoisomerase II resolves intrinsic topological problems of double-stranded DNA. As part of its essential cellular functions, the enzyme generates DNA breaks, but the regulation of this potentially dangerous process is not well understood. Here we report single-molecule fluorescence experiments that reveal a previously uncharacterized sequence of events during DNA cleavage by topoisomerase II: nonspecific DNA binding, sequence-specific DNA bending, and stochastic cleavage of DNA. We have identified unexpected structural roles of Mg2+ ions coordinated in the TOPRIM (topoisomerase-primase) domain in inducing cleavage-competent DNA bending. A break at one scissile bond dramatically stabilized DNA bending, explaining how two scission events in opposing strands can be coordinated to achieve a high probability of double-stranded cleavage. Clamping of the protein N-gate greatly enhanced the rate and degree of DNA bending, resulting in a significant stimulation of the DNA cleavage and opening reactions. Our data strongly suggest that the accurate cleavage of DNA by topoisomerase II is regulated through a tight coordination with DNA bending.


PLOS Genetics | 2013

Direct Monitoring of the Strand Passage Reaction of DNA Topoisomerase II Triggers Checkpoint Activation

Katherine Furniss; Hung Ji Tsai; Jo Ann W. Byl; Andrew B. Lane; Amit C. Vas; Wei Shan Hsu; Neil Osheroff; Duncan J. Clarke

By necessity, the ancient activity of type II topoisomerases co-evolved with the double-helical structure of DNA, at least in organisms with circular genomes. In humans, the strand passage reaction of DNA topoisomerase II (Topo II) is the target of several major classes of cancer drugs which both poison Topo II and activate cell cycle checkpoint controls. It is important to know the cellular effects of molecules that target Topo II, but the mechanisms of checkpoint activation that respond to Topo II dysfunction are not well understood. Here, we provide evidence that a checkpoint mechanism monitors the strand passage reaction of Topo II. In contrast, cells do not become checkpoint arrested in the presence of the aberrant DNA topologies, such as hyper-catenation, that arise in the absence of Topo II activity. An overall reduction in Topo II activity (i.e. slow strand passage cycles) does not activate the checkpoint, but specific defects in the T-segment transit step of the strand passage reaction do induce a cell cycle delay. Furthermore, the cell cycle delay depends on the divergent and catalytically inert C-terminal region of Topo II, indicating that transmission of a checkpoint signal may occur via the C-terminus. Other, well characterized, mitotic checkpoints detect DNA lesions or monitor unattached kinetochores; these defects arise via failures in a variety of cell processes. In contrast, we have described the first example of a distinct category of checkpoint mechanism that monitors the catalytic cycle of a single specific enzyme in order to determine when chromosome segregation can proceed faithfully.


Biochemistry | 2014

Etoposide Quinone Is a Covalent Poison of Human Topoisomerase IIβ

Nicholas A. Smith; Jo Ann W. Byl; Susan L. Mercer; Joseph E. Deweese; Neil Osheroff

Etoposide is a topoisomerase II poison that is utilized to treat a broad spectrum of human cancers. Despite its wide clinical use, 2–3% of patients treated with etoposide eventually develop treatment-related acute myeloid leukemias (t-AMLs) characterized by rearrangements of the MLL gene. The molecular basis underlying the development of these t-AMLs is not well understood; however, previous studies have implicated etoposide metabolites (i.e., etoposide quinone) and topoisomerase IIβ in the leukemogenic process. Although interactions between etoposide quinone and topoisomerase IIα have been characterized, the effects of the drug metabolite on the activity of human topoisomerase IIβ have not been reported. Thus, we examined the ability of etoposide quinone to poison human topoisomerase IIβ. The quinone induced ∼4 times more enzyme-mediated DNA cleavage than did the parent drug. Furthermore, the potency of etoposide quinone was ∼2 times greater against topoisomerase IIβ than it was against topoisomerase IIα, and the drug reacted ∼2–4 times faster with the β isoform. Etoposide quinone induced a higher ratio of double- to single-stranded breaks than etoposide, and its activity was less dependent on ATP. Whereas etoposide acts as an interfacial topoisomerase II poison, etoposide quinone displayed all of the hallmarks of a covalent poison: the activity of the metabolite was abolished by reducing agents, and the compound inactivated topoisomerase IIβ when it was incubated with the enzyme prior to the addition of DNA. These results are consistent with the hypothesis that etoposide quinone contributes to etoposide-related leukemogenesis through an interaction with topoisomerase IIβ.


Chemical Research in Toxicology | 2013

Epimerization of Green Tea Catechins during Brewing Does Not Affect the Ability to Poison Human Type II Topoisomerases

M. Anne Timmel; Jo Ann W. Byl; Neil Osheroff

(-)-Epigallocatechin gallate (EGCG) is the most abundant and biologically active polyphenol in green tea (Camellia sinensis) leaves, and many of its cellular effects are consistent with its actions as a topoisomerase II poison. In contrast to genistein and several related bioflavonoids that act as interfacial poisons, EGCG was the first bioflavonoid shown to act as a covalent topoisomerase II poison. Although studies routinely examine the effects of dietary phytochemicals on enzyme and cellular systems, they often fail to consider that many compounds are altered during cooking or cellular metabolism. To this point, the majority of EGCG and related catechins in green tea leaves are epimerized during the brewing process. Epimerization inverts the stereochemistry of the bond that bridges the B- and C-rings and converts EGCG to (-)-gallocatechin gallate (GCG). Consequently, a significant proportion of EGCG that is ingested during the consumption of green tea is actually GCG. Therefore, the effects of GCG and related epimerized green tea catechins on human topoisomerase IIα and IIβ were characterized. GCG increased levels of DNA cleavage mediated by both enzyme isoforms with an activity that was similar to that of EGCG. GCG acted primarily by inhibiting the ability of topoisomerase IIα and IIβ to ligate cleaved DNA. Several lines of evidence indicate that GCG functions as a covalent topoisomerase II poison that adducts the enzyme. Finally, epimerization did not affect the reactivity of the chemical substituents (the three hydroxyl groups on the B-ring) that were required for enzyme poisoning. Thus, the activity of covalent topoisomerase II poisons appears to be less sensitive to stereochemical changes than interfacial poisons.


Journal of Biological Chemistry | 1998

A mutant yeast topoisomerase II (top2G437S) with differential sensitivity to anticancer drugs in the presence and absence of ATP

Michelle Sabourin; Jo Ann W. Byl; S. Erin Hannah; John L. Nitiss; Neil Osheroff

To further characterize the mechanistic basis for cellular resistance/hypersensitivity to anticancer drugs, a yeast genetic system was used to select a mutant type II topoisomerase that conferred cellular resistance to CP-115,953, amsacrine, etoposide, and ellipticine. The mutant enzyme contained a single point mutation that converted Gly437 → Ser (top2G437S). Purified top2G437S displayed wild-type enzymatic activity in the absence of drugs but exhibited two properties that were not predicted by the cellular resistance phenotype. First, in the absence of ATP, it was hypersensitive to all of the drugs examined and hypersensitivity correlated with increased drug affinity. Second, in the presence of ATP, top2G437S lost its hypersensitivity and displayed wild-type drug sensitivity. Since the resistance of yeast harboring top2G437S could not be explained by alterations in enzyme-drug interactions, physiological levels of topoisomerase II were determined. The Gly437 → Ser mutation reduced the stability of topoisomerase II and decreased the cellular concentration of the enzyme. These findings suggest that the physiological drug resistance phenotype conferred by top2G437S results primarily from its decreased stability. This study highlights the need to analyze both the biochemistry and the physiology of topoisomerase II mutants with altered drug sensitivity in order to define the mechanistic bridge that links enzyme function to cellular phenotype.


Bioorganic & Medicinal Chemistry Letters | 2017

Novel xanthone-polyamine conjugates as catalytic inhibitors of human topoisomerase IIα

Elirosa Minniti; Jo Ann W. Byl; Laura Riccardi; Claudia Sissi; Michela Rosini; Marco De Vivo; Anna Minarini; Neil Osheroff

It has been proposed that xanthone derivatives with anticancer potential act as topoisomerase II inhibitors because they interfere with the ability of the enzyme to bind its ATP cofactor. In order to further characterize xanthone mechanism and generate compounds with potential as anticancer drugs, we synthesized a series of derivatives in which position 3 was substituted with different polyamine chains. As determined by DNA relaxation and decatenation assays, the resulting compounds are potent topoisomerase IIα inhibitors. Although xanthone derivatives inhibit topoisomerase IIα-catalyzed ATP hydrolysis, mechanistic studies indicate that they do not act at the ATPase site. Rather, they appear to function by blocking the ability of DNA to stimulate ATP hydrolysis. On the basis of activity, competition, and modeling studies, we propose that xanthones interact with the DNA cleavage/ligation active site of topoisomerase IIα and inhibit the catalytic activity of the enzyme by interfering with the DNA strand passage step.


Genome Research | 2017

Genome-wide TOP2A DNA cleavage is biased toward translocated and highly transcribed loci

Xiang Yu; James W Davenport; Karen A. Urtishak; Marie L Carillo; Sager J. Gosai; Christos P. Kolaris; Jo Ann W. Byl; Eric Rappaport; Neil Osheroff; Brian D. Gregory; Carolyn A. Felix

Type II topoisomerases orchestrate proper DNA topology, and they are the targets of anti-cancer drugs that cause treatment-related leukemias with balanced translocations. Here, we develop a high-throughput sequencing technology to define TOP2 cleavage sites at single-base precision, and use the technology to characterize TOP2A cleavage genome-wide in the human K562 leukemia cell line. We find that TOP2A cleavage has functionally conserved local sequence preferences, occurs in cleavage cluster regions (CCRs), and is enriched in introns and lincRNA loci. TOP2A CCRs are biased toward the distal regions of gene bodies, and TOP2 poisons cause a proximal shift in their distribution. We find high TOP2A cleavage levels in genes involved in translocations in TOP2 poison-related leukemia. In addition, we find that a large proportion of genes involved in oncogenic translocations overall contain TOP2A CCRs. The TOP2A cleavage of coding and lincRNA genes is independently associated with both length and transcript abundance. Comparisons to ENCODE data reveal distinct TOP2A CCR clusters that overlap with marks of transcription, open chromatin, and enhancers. Our findings implicate TOP2A cleavage as a broad DNA damage mechanism in oncogenic translocations as well as a functional role of TOP2A cleavage in regulating transcription elongation and gene activation.


Nucleic Acids Research | 2017

Interlinked DNA nano-circles for measuring topoisomerase II activity at the level of single decatenation events

Emil L. Kristoffersen; Asger Givskov; Line A. Jørgensen; Pia W. Jensen; Jo Ann W. Byl; Neil Osheroff; Anni H. Andersen; Magnus Stougaard; Yi-Ping Ho; Birgitta R. Knudsen

Abstract DNA nano-structures present appealing new means for monitoring different molecules. Here, we demonstrate the assembly and utilization of a surface-attached double-stranded DNA catenane composed of two intact interlinked DNA nano-circles for specific and sensitive measurements of the life essential topoisomerase II (Topo II) enzyme activity. Topo II activity was detected via the numeric release of DNA nano-circles, which were visualized at the single-molecule level in a fluorescence microscope upon isothermal amplification and fluorescence labeling. The transition of each enzymatic reaction to a micrometer sized labeled product enabled quantitative detection of Topo II activity at the single decatenation event level rendering activity measurements in extracts from as few as five cells possible. Topo II activity is a suggested predictive marker in cancer therapy and, consequently, the described highly sensitive monitoring of Topo II activity may add considerably to the toolbox of individualized medicine where decisions are based on very sparse samples.


Inorganic Chemistry | 2010

First ruthenium organometallic complex of antibacterial agent ofloxacin. Crystal structure and interactions with DNA.

Iztok Turel; Jakob Kljun; Franc Perdih; Elena Morozova; Vladimir Bakulev; N. A. Kasyanenko; Jo Ann W. Byl; Neil Osheroff

Collaboration


Dive into the Jo Ann W. Byl's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Carolyn A. Felix

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Francesco Lo-Coco

University of Rome Tor Vergata

View shared research outputs
Top Co-Authors

Avatar

Syed Khizer Hasan

University of Rome Tor Vergata

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

John L. Nitiss

St. Jude Children's Research Hospital

View shared research outputs
Researchain Logo
Decentralizing Knowledge