Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Joseph E. Deweese is active.

Publication


Featured researches published by Joseph E. Deweese.


Nucleic Acids Research | 2009

The DNA cleavage reaction of topoisomerase II: wolf in sheep's clothing

Joseph E. Deweese; Neil Osheroff

Topoisomerase II is an essential enzyme that is required for virtually every process that requires movement of DNA within the nucleus or the opening of the double helix. This enzyme helps to regulate DNA under- and overwinding and removes knots and tangles from the genetic material. In order to carry out its critical physiological functions, topoisomerase II generates transient double-stranded breaks in DNA. Consequently, while necessary for cell survival, the enzyme also has the capacity to fragment the genome. The DNA cleavage/ligation reaction of topoisomerase II is the target for some of the most successful anticancer drugs currently in clinical use. However, this same reaction also is believed to trigger chromosomal translocations that are associated with specific types of leukemia. This article will familiarize the reader with the DNA cleavage/ligation reaction of topoisomerase II and other aspects of its catalytic cycle. In addition, it will discuss the interaction of the enzyme with anticancer drugs and the mechanisms by which these agents increase levels of topoisomerase II-generated DNA strand breaks. Finally, it will describe dietary and environmental agents that enhance DNA cleavage mediated by the enzyme.


Nature | 2010

A novel and unified two-metal mechanism for DNA cleavage by type II and IA topoisomerases

Bryan Schmidt; Alex Burgin; Joseph E. Deweese; Neil Osheroff; James M. Berger

Type II topoisomerases are required for the management of DNA tangles and supercoils, and are targets of clinical antibiotics and anti-cancer agents. These enzymes catalyse the ATP-dependent passage of one DNA duplex (the transport or T-segment) through a transient, double-stranded break in another (the gate or G-segment), navigating DNA through the protein using a set of dissociable internal interfaces, or ‘gates’. For more than 20 years, it has been established that a pair of dimer-related tyrosines, together with divalent cations, catalyse G-segment cleavage. Recent efforts have proposed that strand scission relies on a ‘two-metal mechanism’, a ubiquitous biochemical strategy that supports vital cellular processes ranging from DNA synthesis to RNA self-splicing. Here we present the structure of the DNA-binding and cleavage core of Saccharomyces cerevisiae topoisomerase II covalently linked to DNA through its active-site tyrosine at 2.5 Å resolution, revealing for the first time the organization of a cleavage-competent type II topoisomerase configuration. Unexpectedly, metal-soaking experiments indicate that cleavage is catalysed by a novel variation of the classic two-metal approach. Comparative analyses extend this scheme to explain how distantly-related type IA topoisomerases cleave single-stranded DNA, unifying the cleavage mechanisms for these two essential enzyme families. The structure also highlights a hitherto undiscovered allosteric relay that actuates a molecular ‘trapdoor’ to prevent subunit dissociation during cleavage. This connection illustrates how an indispensable chromosome-disentangling machine auto-regulates DNA breakage to prevent the aberrant formation of mutagenic and cytotoxic genomic lesions.


Biochemistry and Molecular Biology Education | 2009

DNA Topology and Topoisomerases: Teaching a "Knotty" Subject.

Joseph E. Deweese; Michael A. Osheroff; Neil Osheroff

DNA is essentially an extremely long double‐stranded rope in which the two strands are wound about one another. As a result, topological properties of the genetic material, including DNA underwinding and overwinding, knotting, and tangling profoundly influence virtually every major nucleic acid process. Despite the importance of DNA topology, it is a conceptionally difficult subject to teach because it requires students to visualize three‐dimensional relationships. This article will familiarize the reader with the concept of DNA topology and offer practical approaches and demonstrations to teaching this “knotty” subject in the classroom. Furthermore, it will discuss topoisomerases, the enzymes that regulate the topological state of DNA in the cell. These ubiquitous enzymes perform a number of critical cellular functions by generating transient breaks in the double helix. During this catalytic event, topoisomerases maintain genomic stability by forming covalent phosphotyrosyl bonds between active site residues and the newly generated DNA termini. Topoisomerases are essential for cell survival. However, because they cleave the genetic material, these enzymes also have the potential to fragment the genome. This latter feature of topoisomerases is exploited by some of the most widely prescribed anticancer and antibacterial drugs currently in clinical use. Finally, in addition to curing cancer, topoisomerase action also has been linked to the induction of specific types of leukemia.


Nucleic Acids Research | 2008

Human topoisomerase IIα uses a two-metal-ion mechanism for DNA cleavage

Joseph E. Deweese; Alex B. Burgin; Neil Osheroff

The DNA cleavage reaction of human topoisomerase IIα is critical to all of the physiological and pharmacological functions of the protein. While it has long been known that the type II enzyme requires a divalent metal ion in order to cleave DNA, the role of the cation in this process is not known. To resolve this fundamental issue, the present study utilized a series of divalent metal ions with varying thiophilicities in conjunction with DNA cleavage substrates that replaced the 3′-bridging oxygen of the scissile bond with a sulfur atom (i.e. 3′-bridging phosphorothiolates). Rates and levels of DNA scission were greatly enhanced when thiophilic metal ions were included in reactions that utilized sulfur-containing substrates. Based on these results and those of reactions that employed divalent cation mixtures, we propose that topoisomerase IIα mediates DNA cleavage via a two-metal-ion mechanism. In this model, one of the metal ions makes a critical interaction with the 3′-bridging atom of the scissile phosphate. This interaction greatly accelerates rates of enzyme-mediated DNA cleavage, and most likely is needed to stabilize the leaving 3′-oxygen.


Metallomics | 2010

The use of divalent metal ions by type II topoisomerases.

Joseph E. Deweese; Neil Osheroff

Type II topoisomerases are essential enzymes that regulate DNA under- and overwinding and remove knots and tangles from the genetic material. In order to carry out their critical physiological functions, these enzymes utilize a double-stranded DNA passage mechanism that requires them to generate a transient double-stranded break. Consequently, while necessary for cell survival, type II topoisomerases also have the capacity to fragment the genome. This feature of the prokaryotic and eukaryotic enzymes, respectively, is exploited to treat a variety of bacterial infections and cancers in humans. All type II topoisomerases require divalent metal ions for catalytic function. These metal ions function in two separate active sites and are necessary for the ATPase and DNA cleavage/ligation activities of the enzymes. ATPase activity is required for the strand passage process and utilizes the metal-dependent binding and hydrolysis of ATP to drive structural rearrangements in the protein. Both the DNA cleavage and ligation activities of type II topoisomerases require divalent metal ions and appear to utilize a novel variant of the canonical two-metal-ion phosphotransferase/hydrolase mechanism to facilitate these reactions. This article will focus primarily on eukaryotic type II topoisomerases and the roles of metal ions in the catalytic functions of these enzymes.


Proceedings of the National Academy of Sciences of the United States of America | 2012

DNA cleavage and opening reactions of human topoisomerase IIα are regulated via Mg2+-mediated dynamic bending of gate-DNA

Sanghwa Lee; Seung-Ryoung Jung; Kang Heo; Jo Ann W. Byl; Joseph E. Deweese; Neil Osheroff; Sungchul Hohng

Topoisomerase II resolves intrinsic topological problems of double-stranded DNA. As part of its essential cellular functions, the enzyme generates DNA breaks, but the regulation of this potentially dangerous process is not well understood. Here we report single-molecule fluorescence experiments that reveal a previously uncharacterized sequence of events during DNA cleavage by topoisomerase II: nonspecific DNA binding, sequence-specific DNA bending, and stochastic cleavage of DNA. We have identified unexpected structural roles of Mg2+ ions coordinated in the TOPRIM (topoisomerase-primase) domain in inducing cleavage-competent DNA bending. A break at one scissile bond dramatically stabilized DNA bending, explaining how two scission events in opposing strands can be coordinated to achieve a high probability of double-stranded cleavage. Clamping of the protein N-gate greatly enhanced the rate and degree of DNA bending, resulting in a significant stimulation of the DNA cleavage and opening reactions. Our data strongly suggest that the accurate cleavage of DNA by topoisomerase II is regulated through a tight coordination with DNA bending.


Biochemistry | 2011

Etoposide Quinone Is a Redox-Dependent Topoisomerase II Poison

David A. Jacob; Susan L. Mercer; Neil Osheroff; Joseph E. Deweese

Etoposide is a topoisomerase II poison that is used to treat a variety of human cancers. Unfortunately, 2-3% of patients treated with etoposide develop treatment-related leukemias characterized by 11q23 chromosomal rearrangements. The molecular basis for etoposide-induced leukemogenesis is not understood but is associated with enzyme-mediated DNA cleavage. Etoposide is metabolized by CYP3A4 to etoposide catechol, which can be further oxidized to etoposide quinone. A CYP3A4 variant is associated with a lower risk of etoposide-related leukemias, suggesting that etoposide metabolites may be involved in leukemogenesis. Although etoposide acts at the enzyme-DNA interface, several quinones poison topoisomerase II via redox-dependent protein adduction. The effects of etoposide quinone on topoisomerase IIα-mediated DNA cleavage have been examined previously. Although findings suggest that the activity of the quinone is slightly greater than that of etoposide, these studies were carried out in the presence of significant levels of reducing agents (which should reduce etoposide quinone to the catechol). Therefore, we examined the ability of etoposide quinone to poison human topoisomerase IIα in the absence of reducing agents. Under these conditions, etoposide quinone was ∼5-fold more active than etoposide at inducing enzyme-mediated DNA cleavage. Consistent with other redox-dependent poisons, etoposide quinone inactivated topoisomerase IIα when incubated with the protein prior to DNA and lost activity in the presence of dithiothreitol. Unlike etoposide, the quinone metabolite did not require ATP for maximal activity and induced a high ratio of double-stranded DNA breaks. Our results support the hypothesis that etoposide quinone contributes to etoposide-related leukemogenesis.


Biochemistry | 2009

Coordinating the Two Protomer Active Sites of Human Topoisomerase IIα: Nicks as Topoisomerase II Poisons †

Joseph E. Deweese; Neil Osheroff

Topoisomerase II modulates DNA topology by generating double-stranded breaks in DNA. Results of the current study indicate that the presence of a nick at one scissile bond dramatically increases the rate of cleavage by human topoisomerase IIalpha at the scissile bond on the opposite strand. We propose that this enhanced activity at the second strand coordinates the two protomer subunits of topoisomerase II and allows the enzyme to create double-stranded breaks. Finally, the presence of a nick on one strand induces cleavage on the opposite strand. Thus, nicks are topoisomerase II poisons that generate novel sites of DNA cleavage.


Biochemistry | 2014

Etoposide Quinone Is a Covalent Poison of Human Topoisomerase IIβ

Nicholas A. Smith; Jo Ann W. Byl; Susan L. Mercer; Joseph E. Deweese; Neil Osheroff

Etoposide is a topoisomerase II poison that is utilized to treat a broad spectrum of human cancers. Despite its wide clinical use, 2–3% of patients treated with etoposide eventually develop treatment-related acute myeloid leukemias (t-AMLs) characterized by rearrangements of the MLL gene. The molecular basis underlying the development of these t-AMLs is not well understood; however, previous studies have implicated etoposide metabolites (i.e., etoposide quinone) and topoisomerase IIβ in the leukemogenic process. Although interactions between etoposide quinone and topoisomerase IIα have been characterized, the effects of the drug metabolite on the activity of human topoisomerase IIβ have not been reported. Thus, we examined the ability of etoposide quinone to poison human topoisomerase IIβ. The quinone induced ∼4 times more enzyme-mediated DNA cleavage than did the parent drug. Furthermore, the potency of etoposide quinone was ∼2 times greater against topoisomerase IIβ than it was against topoisomerase IIα, and the drug reacted ∼2–4 times faster with the β isoform. Etoposide quinone induced a higher ratio of double- to single-stranded breaks than etoposide, and its activity was less dependent on ATP. Whereas etoposide acts as an interfacial topoisomerase II poison, etoposide quinone displayed all of the hallmarks of a covalent poison: the activity of the metabolite was abolished by reducing agents, and the compound inactivated topoisomerase IIβ when it was incubated with the enzyme prior to the addition of DNA. These results are consistent with the hypothesis that etoposide quinone contributes to etoposide-related leukemogenesis through an interaction with topoisomerase IIβ.


Chemical Research in Toxicology | 2016

Examination of the Impact of Copper(II) α-(N)-Heterocyclic Thiosemicarbazone Complexes on DNA Topoisomerase IIα

James T. Wilson; Xiaohua Jiang; Bradley McGill; Edward C. Lisic; Joseph E. Deweese

Type II DNA topoisomerases resolve topological knots and tangles in DNA that result from routine cellular processes and are effective targets for anticancer therapeutics. To this end, thiosemicarbazones have been identified as having the ability to kill cancer cells from several cell lines. Literature evidence suggests that at least some thiosemicarbazones have an impact on topoisomerase II activity. However, the mechanism is not as clearly defined. Therefore, we set out to analyze the activity of four α-(N)-heterocyclic thiosemicarbazone compounds against topoisomerase IIα. The ligands, acetylpyridine-ethylthiosemicarbazone (APY-ETSC) and acetylpyrazine-methylthiosemicarbazone (APZ-MTSC), and their copper(II) [Cu(II)] complexes [Cu(APY-ETSC)Cl] and [Cu(APZ-MTSC)Cl] were examined for the ability to impact the catalytic cycle of human topoisomerase IIα. Both [Cu(APY-ETSC)Cl] and [Cu(APZ-MTSC)Cl] were more effective at inhibiting DNA relaxation compared with the ligands alone. Further, both [Cu(APY-ETSC)Cl] and [Cu(APZ-MTSC)Cl] increased double-stranded DNA cleavage levels without inhibiting topoisomerase IIα-mediated DNA ligation. The Cu(II) complexes inactivate enzyme activity over time suggesting a critical interaction with the enzyme. Additionally, we found that the Cu(II)-thiosemicarbazone complexes do not significantly impact DNA cleavage by the catalytic core of the enzyme. This evidence is supported by the fact that both [Cu(APY-ETSC)Cl] and [Cu(APZ-MTSC)Cl], and to a lesser extent the ligands, inhibit topoisomerase IIα-mediated ATP hydrolysis. Based upon kinetic analysis, the Cu(II) complexes appear to be noncompetitive inhibitors of the ATPase domain of topoisomerase IIα. Taken together, our results provide evidence that Cu(II) complexes of α-(N)-heterocyclic thiosemicarbazones catalytically inhibit the enzyme through the ATPase domain but also promote double-stranded DNA cleavage by the enzyme.

Collaboration


Dive into the Joseph E. Deweese's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Edward C. Lisic

Tennessee Technological University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sanghwa Lee

Seoul National University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sungchul Hohng

Seoul National University

View shared research outputs
Top Co-Authors

Avatar

Bradley McGill

Tennessee Technological University

View shared research outputs
Researchain Logo
Decentralizing Knowledge