Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jo El J. Schultz is active.

Publication


Featured researches published by Jo El J. Schultz.


Circulation Research | 1996

Morphine Mimics the Cardioprotective Effect of Ischemic Preconditioning via a Glibenclamide-Sensitive Mechanism in the Rat Heart

Jo El J. Schultz; Anna K. Hsu; Garrett J. Gross

Previous results from our laboratory have suggested that opioid receptors are involved in ischemic preconditioning (PC) in rat heart. Furthermore, other investigators have suggested that mu- and delta-opioid receptors mediate analgesia and hypoxic cerebral vasodilatation via opening of ATP-sensitive K+ (KATP) channels. Thus, the purpose of the present study was to test the hypothesis that activation of opioid receptors mimics the cardioprotective effect of ischemic PC and that this effect is produced by activation of KATP channels in the rat heart. Anesthetized open-chest Wistar rats were subjected to six different protocols. All groups were subjected to 30 minutes of occlusion and 2 hours of reperfusion. Ischemic PC was elicited by three 5-minute occlusion periods interspersed with 5 minutes of reperfusion. Similarly, morphine-induced PC was elicited by three 5-minute drug infusions (100 micrograms/kg i.v. ) interspersed with 5-minute drug-free periods before the prolonged 30-minute occlusion. Infarct size (IS) as a percentage of the area at risk (AAR) was determined by triphenyltetrazolium staining. Ischemic PC and morphine infusions resulted in similar reductions in IS/AAR from 56 +/- 5% to 11 +/- 3% and 12 +/- 5%, respectively (P < .05). Administration of glibenclamide (0.3 mg/kg i.v.), a KATP channel antagonist, or naloxone (3 mg/kg i.v.), a nonselective opioid receptor antagonist, both blocked the cardioprotective effects of morphine. These results indicate that opioid receptor stimulation results in a reduction in infarct size similar to that produced by ischemic PC. The effect of morphine is most likely mediated via an opioid receptor-KATP channel-linked mechanism in the rat heart, since glibenclamide abolished its protection.


Journal of Clinical Investigation | 2002

TGF-β1 mediates the hypertrophic cardiomyocyte growth induced by angiotensin II

Jo El J. Schultz; Sandra A. Witt; Betty J. Glascock; Michelle L. Nieman; Peter J. Reiser; Stacey L. Nix; Thomas R. Kimball; Thomas Doetschman

Angiotensin II (Ang II), a potent hypertrophic stimulus, causes significant increases in TGFb1 gene expression. However, it is not known whether there is a causal relationship between increased levels of TGF-beta1 and cardiac hypertrophy. Echocardiographic analysis revealed that TGF-beta1-deficient mice subjected to chronic subpressor doses of Ang II had no significant change in left ventricular (LV) mass and percent fractional shortening during Ang II treatment. In contrast, Ang II-treated wild-type mice showed a >20% increase in LV mass and impaired cardiac function. Cardiomyocyte cross-sectional area was also markedly increased in Ang II-treated wild-type mice but unchanged in Ang II-treated TGF-beta1-deficient mice. No significant levels of fibrosis, mitotic growth, or cytokine infiltration were detected in Ang II-treated mice. Atrial natriuretic factor expression was approximately 6-fold elevated in Ang II-treated wild-type, but not TGF-beta1-deficient mice. However, the alpha- to beta-myosin heavy chain switch did not occur in Ang II-treated mice, indicating that isoform switching is not obligatorily coupled with hypertrophy or TGF-beta1. The Ang II effect on hypertrophy was shown not to result from stimulation of the endogenous renin-angiotensis system. These results indicate that TGF-beta1 is an important mediator of the hypertrophic growth response of the heart to Ang II.


Circulation | 1998

Ischemic Preconditioning in the Intact Rat Heart Is Mediated by δ1- But Not μ- or κ-Opioid Receptors

Jo El J. Schultz; Anna K. Hsu; Garrett J. Gross

Background—Our laboratory has previously shown that δ-opioid receptors are involved in the cardioprotective effect of ischemic preconditioning in the rat heart. However, this class of receptors consists of two subtypes, δ1 and δ2, and μ- or κ-opioid receptors may also exist in the heart. Therefore, the purpose of the present study was to test the hypothesis that ischemic preconditioning is mediated through stimulation of one or both δ-opioid receptor subtypes. Methods and Results—Anesthetized, open chest, male Wistar rats were assigned to 1 of 14 groups. All animals were subjected to 30 minutes of occlusion and 2 hours of reperfusion. Ischemic preconditioning was elicited by three 5-minute occlusion periods interspersed with 5 minutes of reperfusion. Two doses of 7-benzylidenenaltrexone (BNTX; 1 and 3 mg/kg IV), a selective δ1-opioid receptor antagonist, or naltriben (NTB; 1 and 3 mg/kg IV), a selective δ2-opioid receptor antagonist, were given before ischemic preconditioning. To test for a role of μ-opio...


Pharmacology & Therapeutics | 2001

Opioids and cardioprotection

Jo El J. Schultz; Garrett J. Gross

Opioid peptides and exogenous opioids such as morphine are known to exert important cardiovascular effects. However, until recently, it was not appreciated that activation of specific receptors results in a potent cardioprotective effect to reduce infarct size in experimental animals and to reduce cell death in isolated cardiomyocytes. In intact rat and rabbit hearts, nonselective opioid receptor antagonists such as naloxone and a selective delta1-opioid receptor antagonist, 7-benzylidenenaltrexone, have been shown to inhibit the cardioprotective effect of ischemic preconditioning, a phenomenon in which brief periods of ischemia protect the heart against a more prolonged period of ischemia. Selective delta(1) specific agonists such as 2-methyl-4a-alpha-(3-hydroxyphenyl)-1,2,3,4,4a,5,12,12a-alpha-octahydroquinolino[2,3,3-g]isoquinoline have been shown to exert potent cardioprotective effects in intact animals and cardiac myocytes via activation of Gi/o proteins, protein kinase C, and ultimately, the mitochondrial KATP channel. These protective effects occur immediately following drug administration, and reappear 24-48 hr post treatment. Although further studies are needed to more clearly define the mechanisms by which opioids exert their cardioprotective effects, the data accumulated and summarized in this review suggest that this class of drugs may not only be useful in alleviating the pain associated with a myocardial infarction, but may also be simultaneously reducing the size of the ultimate infarct. Since many of these drugs are already clinically available, a long period of drug development may not be necessary before the use of these drugs reaches the patient with signs of myocardial ischemia.


Circulation Research | 2005

Enhancement of Cardiac Function and Suppression of Heart Failure Progression By Inhibition of Protein Phosphatase 1

Anand Pathak; Federica del Monte; Wen Zhao; Jo El J. Schultz; John N. Lorenz; Ilona Bodi; Doug Weiser; Harvey S. Hahn; Andrew N. Carr; Faisal M. Syed; Nirmala Mavila; Leena Jha; Jiang Qian; Yehia Marreez; Guoli Chen; Dennis W. McGraw; E. Kevin Heist; J. Luis Guerrero; Roger J. Hajjar; Evangelia G. Kranias

Abnormal calcium cycling, characteristic of experimental and human heart failure, is associated with impaired sarcoplasmic reticulum calcium uptake activity. This reflects decreases in the cAMP-pathway signaling and increases in type 1 phosphatase activity. The increased protein phosphatase 1 activity is partially due to dephosphorylation and inactivation of its inhibitor-1, promoting dephosphorylation of phospholamban and inhibition of the sarcoplasmic reticulum calcium-pump. Indeed, cardiac-specific expression of a constitutively active inhibitor-1 results in selective enhancement of phospholamban phosphorylation and augmented cardiac contractility at the cellular and intact animal levels. Furthermore, the β-adrenergic response is enhanced in the transgenic hearts compared with wild types. On aortic constriction, the hypercontractile cardiac function is maintained, hypertrophy is attenuated and there is no decompensation in the transgenics compared with wild-type controls. Notably, acute adenoviral gene delivery of the active inhibitor-1, completely restores function and partially reverses remodeling, including normalization of the hyperactivated p38, in the setting of pre-existing heart failure. Thus, the inhibitor 1 of the type 1 phosphatase may represent an attractive new therapeutic target.


Cytokine & Growth Factor Reviews | 2003

Transforming growth factor beta in cardiovascular development and function

Mohamad Azhar; Jo El J. Schultz; Ingrid L. Grupp; Gerald W. Dorn; Pierre Meneton; Daniël G.M. Molin; Adriana C. Gittenberger-de Groot; Thomas Doetschman

Transforming growth factor betas (TGFbetas) are pleiotropic cytokines involved in many biological processes. Genetic engineering and tissue explanation studies have revealed specific non-overlapping roles for TGFbeta ligands and their signaling molecules in development and in normal function of the cardiovascular system in the adult. In the embryo, TGFbetas appear to be involved in epithelial-mesenchymal transformations (EMT) during endocardial cushion formation, and in epicardial epithelial-mesenchymal transformations essential for coronary vasculature, ventricular myocardial development and compaction. In the adult, TGFbetas are involved in cardiac hypertrophy, vascular remodeling and regulation of the renal renin-angiotensin system. The evidence for TGFbeta activities during cardiovascular development and physiologic function will be given and areas which need further investigation will be discussed.


Journal of Clinical Investigation | 1999

FIBROBLAST GROWTH FACTOR-2 MEDIATES PRESSURE-INDUCED HYPERTROPHIC RESPONSE

Jo El J. Schultz; Sandra A. Witt; Michelle L. Nieman; Peter J. Reiser; Sandra J. Engle; Ming Zhou; Sharon A. Pawlowski; John N. Lorenz; Thomas R. Kimball; Thomas Doetschman

In vitro, fibroblast growth factor-2 (FGF2) has been implicated in cardiomyocyte growth and reexpression of fetal contractile genes, both markers of hypertrophy. However, its in vivo role in cardiac hypertrophy during pressure overload is not well characterized. Mice with or without FGF2 (Fgf2(+/+) and Fgf2(-/-), respectively) were subjected to transverse aortic coarctation (AC). Left ventricular (LV) mass and wall thickness were assessed by echocardiography preoperatively and once a week postoperatively for 10 weeks. In vivo LV function during dobutamine stimulation, cardiomyocyte cross-sectional area, and recapitulation of fetal cardiac genes were also measured. AC Fgf2(-/-) mice develop significantly less hypertrophy (4-24% increase) compared with AC Fgf2(+/+) mice (41-52% increase). Cardiomyocyte cross-sectional area is significantly reduced in AC Fgf2(-/-) mice. Noncoarcted (NC) and AC Fgf2(-/-) mice have similar beta-adrenergic responses, but those of AC Fgf2(+/+) mice are blunted. A lack of mitotic growth in both AC Fgf2(+/+) and Fgf2(-/-) hearts indicates a hypertrophic response of cardiomyocytes. Consequently, FGF2 plays a major role in cardiac hypertrophy. Comparison of alpha- and beta-cardiac myosin heavy chain mRNA and protein levels in NC and AC Fgf2(+/+) and Fgf2(-/-) mice indicates that myosin heavy chain composition depends on hemodynamic stress rather than on FGF2 or hypertrophy, and that isoform switching is transcriptionally, not posttranscriptionally, regulated.


American Journal of Physiology-heart and Circulatory Physiology | 1998

TAN-67, a δ1-opioid receptor agonist, reduces infarct size via activation of Gi/o proteins and KATP channels

Jo El J. Schultz; Anna K. Hsu; Hiroshi Nagase; Garrett J. Gross

We have previously shown that delta (δ)-opioid receptors, most notably δ1, are involved in the cardioprotective effect of ischemic preconditioning (PC) in rats; however, the mechanism by which δ-opioid receptor-induced cardioprotection is mediated remains unknown. Therefore, we hypothesized that several of the known mediators of ischemic PC such as the ATP-sensitive potassium (KATP) channel and Gi/o proteins are involved in the cardioprotective effect produced by δ1-opioid receptor activation. To address these possibilities, anesthetized, open-chest Wistar rats were randomly assigned to five groups. Control animals were subjected to 30 min of coronary artery occlusion and 2 h of reperfusion. To demonstrate that stimulating δ1-opioid receptors produces cardioprotection, TAN-67, a new selective δ1-agonist, was infused for 15 min before the long occlusion and reperfusion periods. In addition, one group received 7-benzylidenenaltrexone (BNTX), a selective δ1-antagonist, before TAN-67. To study the involvement of KATPchannels or Gi/o proteins in δ1-opioid receptor-induced cardioprotection, glibenclamide (Glib), a KATP channel antagonist, or pertussis toxin (PTX), an inhibitor of Gi/o proteins, was administered before TAN-67. Infarct size (IS) as a percentage of the area at risk (IS/AAR) was determined by tetrazolium stain. TAN-67 significantly reduced IS/AAR as compared with control (56 ± 2 to 27 ± 5%, n = 5, P < 0.05). The cardioprotective effect of TAN-67 was completely abolished by BNTX, Glib, and PTX (51 ± 3, 53 ± 5, and 61 ± 4%, n = 6 for each group, respectively). These results are the first to suggest that stimulating the δ1-opioid receptor elicits a cardioprotective effect that is mediated via Gi/o proteins and KATP channels in the intact rat heart.We have previously shown that delta (delta)-opioid receptors, most notably delta 1, are involved in the cardioprotective effect of ischemic preconditioning (PC) in rats; however, the mechanism by which delta-opioid receptor-induced cardioprotection is mediated remains unknown. Therefore, we hypothesized that several of the known mediators of ischemic PC such as the ATP-sensitive potassium (KATP) channel and Gi/o proteins are involved in the cardioprotective effect produced by delta 1-opioid receptor activation. To address these possibilities, anesthetized, open-chest Wistar rats were randomly assigned to five groups. Control animals were subjected to 30 min of coronary artery occlusion and 2 h of reperfusion. To demonstrate that stimulating delta 1-opioid receptors produces cardioprotection, TAN-67, a new selective delta 1-agonist, was infused for 15 min before the long occlusion and reperfusion periods. In addition, one group received 7-benzylidenenaltrexone (BNTX), a selective delta 1-antagonist, before TAN-67. To study the involvement of KATP channels or Gi/o proteins in delta 1-opioid receptor-induced cardioprotection, glibenclamide (Glib), a KATP channel antagonist, or pertussis toxin (PTX), an inhibitor of Gi/o proteins, was administered before TAN-67. Infarct size (IS) as a percentage of the area at risk (IS/AAR) was determined by tetrazolium stain. TAN-67 significantly reduced IS/AAR as compared with control (56 +/- 2 to 27 +/- 5%, n = 5, P < 0.05). The cardioprotective effect of TAN-67 was completely abolished by BNTX, Glib, and PTX (51 +/- 3, 53 +/- 5, and 61 +/- 4%, n = 6 for each group, respectively). These results are the first to suggest that stimulating the delta 1-opioid receptor elicits a cardioprotective effect that is mediated via Gi/o proteins and KATP channels in the intact rat heart.


Circulation | 2009

Peripheral Nociception Associated With Surgical Incision Elicits Remote Nonischemic Cardioprotection Via Neurogenic Activation of Protein Kinase C Signaling

W. Keith Jones; Guo-Chang Fan; Siyun Liao; Jun-Ming Zhang; Yang Wang; Neal L. Weintraub; Evangelia G. Kranias; Jo El J. Schultz; John N. Lorenz; Xiaoping Ren

Background— Although remote ischemic stimuli have been shown to elicit cardioprotection against ischemia/reperfusion injury, there is little known about the effects of nonischemic stimuli. We previously described a remote cardioprotective effect of nonischemic surgical trauma (abdominal incision) called remote preconditioning of trauma (RPCT). In the present study, we elucidate mechanisms underlying this phenomenon. Methods and Results— We used a murine model of myocardial infarction to evaluate ischemia/reperfusion injury, and either abdominal surgical incision, or application of topical capsaicin, to elicit cardioprotection. We show that the cardioprotective effect of RPCT is initiated by skin nociception, and requires neurogenic signaling involving spinal nerves and activation of cardiac sensory and sympathetic nerves. Our results demonstrate bradykinin-dependent activation and repression, respectively, of PKCϵ and PKC&dgr; in myocardium after RPCT, and we show involvement of the KATP channels in cardioprotection. Finally, we show that topical application of capsaicin, which selectively activates C sensory fibers in the skin, mimics the cardioprotective effect of RPCT against myocardial infarction. Conclusions— Nontraumatic nociceptive preconditioning represents a novel therapeutic strategy for cardioprotection with great potential clinical utility.


American Journal of Physiology-heart and Circulatory Physiology | 1999

Importance of PKC and tyrosine kinase in single or multiple cycles of preconditioning in rat hearts.

Ryan M. Fryer; Jo El J. Schultz; Anna K. Hsu; Garrett J. Gross

Both tyrosine kinase (TK) and protein kinase C (PKC) inhibitors have been shown individually to completely abolish the cardioprotective effects of ischemic preconditioning (IPC) in rabbits; however, blockade of both enzymes is necessary to totally abolish IPC in pigs. Recently, we have shown that TK inhibition partially attenuates the cardioprotective effect of IPC in intact rat hearts. Therefore, the present study was designed to test the hypothesis that inhibition of both TK and PKC is necessary to completely abolish IPC in the intact rat and that this effect is dependent on the intensity of the preconditioning stimulus. All animals were subjected to 30 min of coronary artery occlusion and 2 h of reperfusion. In series 1, multiple-cycle-induced IPC was produced via three 5-min occlusions interspersed with 5 min of reperfusion (3 × 5 IPC). Genistein (5 mg/kg), a TK inhibitor infused 30 min before IPC, and chelerythrine chloride (5 mg/kg), a PKC inhibitor infused 5 min before the prolonged ischemic insult, were administered alone or in combination in the absence or presence of 3 × 5 IPC. 3 × 5 IPC produced a marked reduction in infarct size as a percentage of area at risk compared with control (8.0 ± 0.8 vs. 56.1 ± 0.8%). The effects of 3 × 5 IPC were partially blocked by pretreatment with genistein (34.0 ± 2.0%) or chelerythrine (26.4 ± 2.8%) alone; however, combined administration of genistein and chelerythrine completely abolished the effects of 3 × 5 IPC (50.7 ± 3.6%). In series 2, single-cycle IPC was elicited by one 5-min occlusion followed by 10 min of reperfusion (1 × 5 IPC). Compared with control, 1 × 5 IPC also significantly reduced infarct size (15.4 ± 3.0%). Genistein or chelerythrine administered alone completely abolished 1 × 5 IPC-induced cardioprotection. These results suggest that the efficacy of TK and PKC inhibition to block IPC depends on the intensity of the preconditioning stimulus and that these kinases may work through parallel pathways.

Collaboration


Dive into the Jo El J. Schultz's collaboration.

Top Co-Authors

Avatar

Garrett J. Gross

Medical College of Wisconsin

View shared research outputs
Top Co-Authors

Avatar

Gilbert Newman

University of Cincinnati Academic Health Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anna K. Hsu

Medical College of Wisconsin

View shared research outputs
Top Co-Authors

Avatar

Siyun Liao

University of Cincinnati

View shared research outputs
Top Co-Authors

Avatar

John N. Lorenz

University of Cincinnati Academic Health Center

View shared research outputs
Top Co-Authors

Avatar

Ingrid L. Grupp

University of Cincinnati Academic Health Center

View shared research outputs
Top Co-Authors

Avatar

Craig Bolte

University of Cincinnati

View shared research outputs
Top Co-Authors

Avatar

Evangelia G. Kranias

University of Cincinnati Academic Health Center

View shared research outputs
Top Co-Authors

Avatar

Stacey L. House

Washington University in St. Louis

View shared research outputs
Researchain Logo
Decentralizing Knowledge