Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Joachim H. Clement is active.

Publication


Featured researches published by Joachim H. Clement.


Science Translational Medicine | 2010

Frequent and Focal FGFR1 Amplification Associates with Therapeutically Tractable FGFR1 Dependency in Squamous Cell Lung Cancer

Jonathan M. Weiss; Martin L. Sos; Danila Seidel; Martin Peifer; Thomas Zander; Johannes M. Heuckmann; Roland T. Ullrich; Roopika Menon; Sebastian Maier; Alex Soltermann; Holger Moch; Patrick Wagener; Florian Fischer; Stefanie Heynck; Mirjam Koker; Jakob Schöttle; Frauke Leenders; Franziska Gabler; Ines Dabow; Silvia Querings; Lukas C. Heukamp; Hyatt Balke-Want; Sascha Ansén; Daniel Rauh; Ingelore Baessmann; Janine Altmüller; Zoe Wainer; Matthew Conron; Gavin Wright; Prudence A. Russell

FGFR1 amplification provides a therapeutic target for squamous cell lung cancer, which is resistant to other targeted lung cancer drugs. A Smoking Gun for Lung Cancer Detectives and scientists alike need strong evidence to take their cases to the judge, who for scientists is often a patient with a deadly disease. Yet, new culprits are sometimes found that can break a case wide open. Lung cancer, which accounts for more than 10% of the global cancer burden, has a poor prognosis and inadequately responds to chemotherapy and radiotherapy. New targeted treatments for lung adenocarcinomas inhibit the oncogenic versions of signaling protein kinases that arise from mutations typically found in lung cancer patients who have never smoked. However, smokers frequently suffer from a different deviant, squamous cell lung cancers, for which there are no known molecular genetic targets for therapy. Now, Weiss et al. have fingered a new suspect in smoking-related lung cancer: amplification of the FGFR1 gene, which encodes the fibroblast growth factor receptor 1 tyrosine kinase (FGFR1). To identify therapeutically viable genetic alterations that may influence squamous cell lung cancer, Weiss et al. performed genomic profiles on a large set of lung cancer specimens. Squamous cell lung cancer samples showed FGFR1 amplification, which was not found in other lung cancer subtypes. The authors then determined that a molecule that broadly inhibits FGF receptor function could block tumor growth and cause cell death in the cancers that expressed high amounts of the FGFR1 gene product in a manner that was dependent on FGFR1 expression. Moreover, FGFR1 inhibition resulted in a considerable decrease in tumor size in a mouse model of FGFR1-amplified lung cancer. This culmination of evidence implies that inhibition of this receptor tyrosine kinase should be explored as a candidate therapy for corralling squamous cell lung cancer in smokers. Lung cancer remains one of the leading causes of cancer-related death in developed countries. Although lung adenocarcinomas with EGFR mutations or EML4-ALK fusions respond to treatment by epidermal growth factor receptor (EGFR) and anaplastic lymphoma kinase (ALK) inhibition, respectively, squamous cell lung cancer currently lacks therapeutically exploitable genetic alterations. We conducted a systematic search in a set of 232 lung cancer specimens for genetic alterations that were therapeutically amenable and then performed high-resolution gene copy number analyses. We identified frequent and focal fibroblast growth factor receptor 1 (FGFR1) amplification in squamous cell lung cancer (n = 155), but not in other lung cancer subtypes, and, by fluorescence in situ hybridization, confirmed the presence of FGFR1 amplifications in an independent cohort of squamous cell lung cancer samples (22% of cases). Using cell-based screening with the FGFR inhibitor PD173074 in a large (n = 83) panel of lung cancer cell lines, we demonstrated that this compound inhibited growth and induced apoptosis specifically in those lung cancer cells carrying amplified FGFR1. We validated the FGFR1 dependence of FGFR1-amplified cell lines by FGFR1 knockdown and by ectopic expression of an FGFR1-resistant allele (FGFR1V561M), which rescued FGFR1-amplified cells from PD173074-mediated cytotoxicity. Finally, we showed that inhibition of FGFR1 with a small molecule led to significant tumor shrinkage in vivo. Thus, focal FGFR1 amplification is common in squamous cell lung cancer and associated with tumor growth and survival, suggesting that FGFR inhibitors may be a viable therapeutic option in this cohort of patients.


Nature Genetics | 2012

Integrative genome analyses identify key somatic driver mutations of small-cell lung cancer

Martin Peifer; Lynnette Fernandez-Cuesta; Martin L. Sos; Julie George; Danila Seidel; Lawryn H. Kasper; Dennis Plenker; Frauke Leenders; Ruping Sun; Thomas Zander; Roopika Menon; Mirjam Koker; Ilona Dahmen; Christian Müller; Vincenzo Di Cerbo; Hans Ulrich Schildhaus; Janine Altmüller; Ingelore Baessmann; Christian Becker; Bram De Wilde; Jo Vandesompele; Diana Böhm; Sascha Ansén; Franziska Gabler; Ines Wilkening; Stefanie Heynck; Johannes M. Heuckmann; Xin Lu; Scott L. Carter; Kristian Cibulskis

Small-cell lung cancer (SCLC) is an aggressive lung tumor subtype with poor prognosis. We sequenced 29 SCLC exomes, 2 genomes and 15 transcriptomes and found an extremely high mutation rate of 7.4 ± 1 protein-changing mutations per million base pairs. Therefore, we conducted integrated analyses of the various data sets to identify pathogenetically relevant mutated genes. In all cases, we found evidence for inactivation of TP53 and RB1 and identified recurrent mutations in the CREBBP, EP300 and MLL genes that encode histone modifiers. Furthermore, we observed mutations in PTEN, SLIT2 and EPHA7, as well as focal amplifications of the FGFR1 tyrosine kinase gene. Finally, we detected many of the alterations found in humans in SCLC tumors from Tp53 and Rb1 double knockout mice. Our study implicates histone modification as a major feature of SCLC, reveals potentially therapeutically tractable genomic alterations and provides a generalizable framework for the identification of biologically relevant genes in the context of high mutational background.


Cancer Discovery | 2011

Mutations in the DDR2 Kinase Gene Identify a Novel Therapeutic Target in Squamous Cell Lung Cancer

Peter S. Hammerman; Martin L. Sos; Alex H. Ramos; Chunxiao Xu; Amit Dutt; Wenjun Zhou; Lear E. Brace; Brittany A. Woods; Wenchu Lin; Jianming Zhang; Xianming Deng; Sang Min Lim; Stefanie Heynck; Martin Peifer; Jeffrey R. Simard; Michael S. Lawrence; Robert C. Onofrio; Helga B. Salvesen; Danila Seidel; Thomas Zander; Johannes M. Heuckmann; Alex Soltermann; Holger Moch; Mirjam Koker; Frauke Leenders; Franziska Gabler; Silvia Querings; Sascha Ansén; Elisabeth Brambilla; Christian Brambilla

UNLABELLED While genomically targeted therapies have improved outcomes for patients with lung adenocarcinoma, little is known about the genomic alterations which drive squamous cell lung cancer. Sanger sequencing of the tyrosine kinome identified mutations in the DDR2 kinase gene in 3.8% of squamous cell lung cancers and cell lines. Squamous lung cancer cell lines harboring DDR2 mutations were selectively killed by knock-down of DDR2 by RNAi or by treatment with the multi-targeted kinase inhibitor dasatinib. Tumors established from a DDR2 mutant cell line were sensitive to dasatinib in xenograft models. Expression of mutated DDR2 led to cellular transformation which was blocked by dasatinib. A squamous cell lung cancer patient with a response to dasatinib and erlotinib treatment harbored a DDR2 kinase domain mutation. These data suggest that gain-of-function mutations in DDR2 are important oncogenic events and are amenable to therapy with dasatinib. As dasatinib is already approved for use, these findings could be rapidly translated into clinical trials. SIGNIFICANCE DDR2 mutations are present in 4% of lung SCCs, and DDR2 mutations are associated with sensitivity to dasatinib. These findings provide a rationale for designing clinical trials with the FDA-approved drug dasatinib in patients with lung SCCs.


Journal of Cancer Research and Clinical Oncology | 2005

Bone morphogenetic protein 2 (BMP-2) and induction of tumor angiogenesis

Martin Raida; Joachim H. Clement; Russell Leek; Kurosh Ameri; Roy Bicknell; Dietger Niederwieser; Adrian L. Harris

Purpose: Bone morphogenetic proteins (BMPs) are members of the transforming growth factor-beta family and play an important role in the regulation of embryonic vasculogenesis but their role in postnatal angiogenesis remains to be clarified. In this study we investigated a possible role of BMP-2 in the promotion of tumor angiogenesis. Methods: We studied the effect of BMP-2 on human dermal microvascular endothelial cells (HDMECs) and examined a possible angiogenic activity of BMP-2 with the mouse sponge assay. The effect of BMP-2 overexpression on tumor vascularization was also analyzed in xenografts of human BMP-2 transfected MCF-7 breast cancer cells (MCF-7/BMP2) in mice. Results: BMP receptor activation selectively induced the phosphorylation of p38 mitogen-activated protein kinase (MAPK) in contrast to the ERK1/2 MAP kinases. In keeping with this finding, BMP-2 had no significant effect on endothelial cell proliferation but promoted HDMEC tube formation in the matrigel assay. The transcription factor inhibitor of differentiation 1 (Id1), which is known to play an important role in neovascularization of tumors, was confirmed as a BMP target in HDMECs. Immunohistochemical analysis of sponge sections revealed that BMP-2 induced vascularization and showed an additive enhancement of angiogenesis with VEGF. In the murine breast cancer xenograft model, human MCF-7 cells with stable overexpression of BMP-2 developed vascularized tumors while empty vector control MCF-7 cells failed to form tumors. Conclusions: We conclude that activation of the BMP pathway by BMP-2 can promote vascularization and might be involved in tumor angiogenesis possibly by stimulating the Id1 and p38 MAPK pathway.


Cancer Discovery | 2014

CD74-NRG1 fusions in lung adenocarcinoma

Lynnette Fernandez-Cuesta; Dennis Plenker; Hirotaka Osada; Ruping Sun; Roopika Menon; Frauke Leenders; Sandra Ortiz-Cuaran; Martin Peifer; Marc Bos; J. Dassler; Florian Malchers; Jakob Schöttle; W. Vogel; Ilona Dahmen; Mirjam Koker; Roland T. Ullrich; Gavin Wright; Prue Russell; Zoe Wainer; Benjamin Solomon; E. Brambilla; H. Nagy-Mignotte; Denis Moro-Sibilot; Christian Brambilla; Sylvie Lantuejoul; Janine Altmüller; Christian Becker; Peter Nürnberg; Johannes M. Heuckmann; Erich Stoelben

UNLABELLED We discovered a novel somatic gene fusion, CD74-NRG1, by transcriptome sequencing of 25 lung adenocarcinomas of never smokers. By screening 102 lung adenocarcinomas negative for known oncogenic alterations, we found four additional fusion-positive tumors, all of which were of the invasive mucinous subtype. Mechanistically, CD74-NRG1 leads to extracellular expression of the EGF-like domain of NRG1 III-β3, thereby providing the ligand for ERBB2-ERBB3 receptor complexes. Accordingly, ERBB2 and ERBB3 expression was high in the index case, and expression of phospho-ERBB3 was specifically found in tumors bearing the fusion (P < 0.0001). Ectopic expression of CD74-NRG1 in lung cancer cell lines expressing ERBB2 and ERBB3 activated ERBB3 and the PI3K-AKT pathway, and led to increased colony formation in soft agar. Thus, CD74-NRG1 gene fusions are activating genomic alterations in invasive mucinous adenocarcinomas and may offer a therapeutic opportunity for a lung tumor subtype with, so far, no effective treatment. SIGNIFICANCE CD74–NRG1 fusions may represent a therapeutic opportunity for invasive mucinous lung adenocarcinomas, a tumor with no effective treatment that frequently presents with multifocal unresectable disease.


Journal of Biophotonics | 2010

Identification and differentiation of single cells from peripheral blood by Raman spectroscopic imaging

Ute Neugebauer; Joachim H. Clement; Thomas Bocklitz; Christoph Krafft; Jürgen Popp

Medical diagnosis can be improved significantly by fast, highly sensitive and quantitative cell identification from easily accessible body fluids. Prominent examples are disseminated tumor cells circulating in the peripheral blood of cancer patients. These cells are extremely rare and therefore difficult to detect. In this contribution we present the Raman spectroscopic characterization of different cells that can be found in peripheral blood such as leukocytes, leukemic cells and solid tumor cells. Leukocytes were isolated from the peripheral blood from healthy donors. Breast carcinoma derived tumor cells (MCF-7, BT-20) and myeloid leukaemia cells (OCI-AML3) were prepared from cell cultures. Raman images were collected from dried cells on calcium fluoride slides using 785 nm laser excitation. Unsupervised statistical methods (hierarchical cluster analysis and principal component analysis) were used to visualize spectral differences and cluster formation according to the cell type. With the help of supervised statistical methods (support vector machines) a classification model with 99.7% accuracy rates for the differentiation of the cells was built. The model was successfully applied to identify single cells from an independent mixture of cells based on their vibrational spectra. The classification was confirmed by fluorescence staining of the cells after the Raman measurement.


Journal of Cancer Research and Clinical Oncology | 2000

Bone morphogenetic protein 2 (BMP-2) induces sequential changes of Id gene expression in the breast cancer cell line MCF-7.

Joachim H. Clement; Nannette Marr; Anke Meissner; Manuela Schwalbe; Walter Sebald; Kay-Oliver Kliche; K. Höffken; Stefan Wölfl

Abstract Bone morphogenetic proteins (BMPs) are involved in the development of various organs including the mammary gland. They are well-regulated and act in a time-, concentration- and cell-type-specific manner. We found that BMP-2 is expressed in primary breast tumor tissue samples and in breast cancer cell lines. Hybridization of labeled cDNA, obtained from the breast cancer cell line MCF-7, against the Atlas human cDNA expression array revealed differential gene expression depending on BMP-2 treatment. The most prominent changes were observed for the helix-loop-helix proteins Id-1, Id-2 and Id-3. Id-1 expression had increased severalfold after 4 h and was even higher after 24 h. Id-2 and Id-3 were more strongly induced after 4 h and showed no further significant change after 24 h. Analysis of cell-cycle distribution revealed a marked increase of the sub-G1 phase after 48 h in serum-deprived cells. In the presence of BMP-2 no change was observed over 48 h indicating that BMP-2 does not induce apoptosis. In addition, expression of caspase-3 was reduced in BMP-2-treated cells after 24 h. In summary, our results clearly indicate that BMP-2 is a susceptibility factor keeping the cells ready for the integration of various other signals for cell progression.


International Journal of Cancer | 1999

Expression of bone morphogenetic protein 6 in normal mammary tissue and breast cancer cell lines and its regulation by epidermal growth factor

Joachim H. Clement; Jörg Sänger; K. Höffken

Bone morphogenetic proteins (BMPs) are multifunctional regulators of proliferation, differentiation and apoptosis. BMP‐6 is involved in numerous developmental processes. We have demonstrated expression of BMP‐6 in breast cancer cell lines by RT‐PCR and immuno‐histochemistry. The level of BMP‐6 mRNA decreased upon serum starvation, whereas epidermal growth factor (EGF) treatment led to elevation of BMP‐6 mRNA levels in a dose‐dependent manner, with a maximum at 50 ng/ml EGF under serum‐free conditions in hormone‐sensitive (MCF‐7) and in hormone‐insensitive (SK‐BR‐3) breast cancer cell lines. The EGF‐like growth factors transforming growth factor‐α, amphiregulin and betacellulin were also able to elevate the BMP‐6 mRNA level after 24 hr. Inhibition of EGF receptor tyrosine kinase with tyrphostine AG1517 repressed the inductive effect of these growth factors, indicating an EGF receptor‐mediated regulation of BMP‐6 mRNA. In addition, BMP‐6 mRNA was detected in tumor samples from breast carcinoma patients. However, levels were reduced in 18/44 samples compared with tumor‐free resection margins. In 12 of these 18 patients, at least a 10‐fold reduction of EGF receptor mRNA levels in tumor samples vs. tumor‐free samples was observed. This suggests a putative relationship between EGF receptor and BMP‐6 mRNA levels in breast cancer. Int. J. Cancer 80:250–256, 1999.


Journal of Cancer Research and Clinical Oncology | 2001

Elevated activity and expression of Src-family kinases in human breast carcinoma tissue versus matched non-tumor tissue

Diana Reissig; Joachim H. Clement; Jörg Sänger; Alexander Berndt; H. Kosmehl; Frank-D. Böhmer

Abstract Src-family kinase expression was measured in 52 human mammary tumor (T) specimens compared with non-tumor (NT) tissue from the same patient by enzymatic assays employing a Src-kinase family-specific peptide substrate and by immunoblotting with an antibody recognizing the Src-family kinases Src, Fyn, and Yes. In the T specimens, the mean enzymatic activity was moderately elevated (T: 160 fmol ATP min−1 mg−1; NT: 115 fmol ATP min−1 mg−1) with 25 tumor samples having higher activity than the corresponding NT tissue, 17 having lower activity, and no activity detectable in ten T/NT pairs. Immunoblotting revealed clearly elevated expression in 25 tumor tissues and no differences or expression below the detection limit in the remaining T/NT pairs. The data are in agreement with a possible role of Src-family kinases for the biology of mammary carcinoma.


Macromolecular Bioscience | 2012

Amino‐Functionalized Cellulose Nanoparticles: Preparation, Characterization, and Interactions with Living Cells

Melanie Nikolajski; Jana Wotschadlo; Joachim H. Clement; Thomas Heinze

Spherical nanoparticles with sizes from 80 to 200 nm are obtained by self-assembly of highly functionalized 6-deoxy-6-(ω-aminoalkyl)aminocellulosecarbamates. The particles are very stable, nontoxic, and possess primary amino groups that are accessible to further modifications in aqueous suspension. The particles can be labeled with rhodamine B isothiocyanate without changing their size, stability, and shape. The nanoparticles obtained are investigated by means of photo correlation spectroscopy, zeta potential measurements, SEM and fluorescence spectroscopy. Incorporation of the nanoparticles in human foreskin fibroblasts BJ-1-htert and breast carcinoma MCF-7 cells without any transfection reagent is proved by means of confocal laser scanning microscopy.

Collaboration


Dive into the Joachim H. Clement's collaboration.

Top Co-Authors

Avatar

N. Buske

University of Brasília

View shared research outputs
Top Co-Authors

Avatar

Silvio Dutz

Technische Universität Ilmenau

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Christoph Krafft

Leibniz Institute of Photonic Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jürgen Popp

Leibniz Institute of Photonic Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge