Joachim Mathiesen
University of Copenhagen
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Joachim Mathiesen.
Physical Review Letters | 2006
Dirk Helbing; Anders Johansson; Joachim Mathiesen; Mogens H. Jensen; Alex Hansen
We propose a many-particle-inspired theory for granular outflows from a hopper and for the escape dynamics through a bottleneck based on a continuity equation in polar coordinates. If the inflow is below the maximum outflow, we find an asymptotic stationary solution. If the inflow is above this value, we observe queue formation, which can be described by a shock wave equation. We also address the experimental observation of intermittent outflows, taking into account the lack of space in the merging zone by a minimum function and coordination problems by a stochastic variable. This results in avalanches of different sizes even if friction, force networks, inelastic collapse, or delay-induced stop-and-go waves are not assumed. Our intermittent flows result from a random alternation between particle propagation and gap propagation. Erratic flows in congested merging zones of vehicle traffic may be explained in a similar way.
Physical Review E | 2007
Stéphane Santucci; Knut Jørgen Måløy; Arnaud Delaplace; Joachim Mathiesen; Alex Hansen; Jan Øistein Haavig Bakke; Jean Schmittbuhl; Loïc Vanel; Purusattam Ray
We analyze the statistical distribution function for the height fluctuations of brittle fracture surfaces using extensive experimental data sampled on widely different materials and geometries. We compare a direct measurement of the distribution to an analysis based on the structure functions. For length scales delta larger than a characteristic scale Lambda that corresponds to a material heterogeneity size, we find that the distribution of the height increments Deltah=h(x+delta)-h(x) is Gaussian and monoaffine, i.e., the scaling of the standard deviation sigma is proportional to delta(zeta) with a unique roughness exponent. Below the scale Lambda we observe a deviation from a Gaussian distribution and a monoaffine behavior. We discuss for the latter, the relevance of a multiaffine analysis and the influences of the discreteness resulting from material microstructures or experimental sampling.
Proceedings of the National Academy of Sciences of the United States of America | 2013
Joachim Mathiesen; Luiza Angheluta; Peter T. H. Ahlgren; Mogens H. Jensen
Significance Online social networks have over the last decade influenced the way people interact. Data from Twitter allow for a detailed study of the activity in online massive communities. By studying the frequency by which international brands appear on Twitter and the trade of financial securities on financial markets, we find a characteristic bursty behavior of the activity levels of Twitter users and market participants. We explain the bursty behavior by a simple model of the large-scale human behavior and quantify the correlations in the activity levels. The statistical similarity of the two social systems is an indication that the complex process underlying individual decision-making might not be very different for Twitter users and participants in financial markets. Using empirical data from a social media site (Twitter) and on trading volumes of financial securities, we analyze the correlated human activity in massive social organizations. The activity, typically excited by real-world events and measured by the occurrence rate of international brand names and trading volumes, is characterized by intermittent fluctuations with bursts of high activity separated by quiescent periods. These fluctuations are broadly distributed with an inverse cubic tail and have long-range temporal correlations with a power spectrum. We describe the activity by a stochastic point process and derive the distribution of activity levels from the corresponding stochastic differential equation. The distribution and the corresponding power spectrum are fully consistent with the empirical observations.
Physical Review E | 2005
Eran Bouchbinder; Joachim Mathiesen; Itamar Procaccia
We propose a theoretical model for branching instabilities in 2-dimensional fracture, offering predictions for when crack branching occurs, how multiple cracks develop, and what is the geometry of multiple branches. The model is based on equations of motion for crack tips which depend only on the time dependent stress intensity factors. The latter are obtained by invoking an approximate relation between static and dynamic stress intensity factors, together with an essentially exact calculation of the static ones. The results of this model are in qualitative agreement with a number of experiments in the literature.
Physical Review Letters | 2008
Luiza Angheluta; Espen Jettestuen; Joachim Mathiesen; François Renard; Bjørn Jamtveit
The application of stress to multiphase solid-liquid systems often results in morphological instabilities. Here we propose a solid-solid phase transformation model for roughening instability in the interface between two porous materials with different porosities under normal compression stresses. This instability is triggered by a finite jump in the free energy density across the interface, and it leads to the formation of fingerlike structures aligned with the principal direction of compaction. The model is proposed as an explanation for the roughening of stylolites-irregular interfaces associated with the compaction of sedimentary rocks that fluctuate about a plane perpendicular to the principal direction of compaction.
Nature Communications | 2014
Ninna S. Rossen; Jens M. Tarp; Joachim Mathiesen; Mogens H. Jensen; Lene B. Oddershede
In healthy blood vessels with a laminar blood flow, the endothelial cell division rate is low, only sufficient to replace apoptotic cells. The division rate significantly increases during embryonic development and under halted or turbulent flow. Cells in barrier tissue are connected and their motility is highly correlated. Here we investigate the long-range dynamics induced by cell division in an endothelial monolayer under non-flow conditions, mimicking the conditions during vessel formation or around blood clots. Cell divisions induce long-range, well-ordered vortex patterns extending several cell diameters away from the division site, in spite of the system’s low Reynolds number. Our experimental results are reproduced by a hydrodynamic continuum model simulating division as a local pressure increase corresponding to a local tension decrease. Such long-range physical communication may be crucial for embryonic development and for healing tissue, for instance around blood clots.
EPL | 2006
Joachim Mathiesen; Itamar Procaccia; Harry L. Swinney; Matthew Thrasher
We investigate whether fractal viscous fingering and diffusion-limited aggregates are in the same scaling universality class. We bring together the largest available viscous fingering patterns and a novel technique for obtaining the conformal map from the unit circle to an arbitrary singly connected domain in two dimensions. These two Laplacian fractals appear different to the eye; in addition, viscous fingering is grown in parallel and the aggregates by a serial algorithm. Nevertheless, the data strongly indicate that these two fractal growth patterns are in the same universality class.
Journal of Glaciology | 2004
Joachim Mathiesen; Jesper Ferkinghoff-Borg; Mogens H. Jensen; Mogens T. Levinsen; Poul Olesen; Dorthe Dahl-Jensen; Anders Svensson
The North Greenland Icecore Project (NorthGRIP) ice core provides palaeoclimatic information back to about 120 kyr BP. The size distributions of ice crystals in the upper 880 m of the NorthGRIP ice core, which cover a time-span of approximately 5300 years, have been obtained previously. The distributions evolve towards a universal curve, indicating a common underlying physical process in the formation of crystals We identify this process as an interplay between fragmentation of the crystals and diffusion of their grain boundaries. The process is described by a two-parameter differential equation to which we obtain the exact solution. The solution is in excellent agreement with the measured distributions.
Physical Review Letters | 2011
Joachim Mathiesen; Namiko Mitarai; Kim Sneppen; Ala Trusina
Ecological systems comprise an astonishing diversity of species that cooperate or compete with each other forming complex mutual dependencies. The minimum requirements to maintain a large species diversity on long time scales are in general unknown. Using lichen communities as an example, we propose a model for the evolution of mutually excluding organisms that compete for space. We suggest that chainlike or cyclic invasions open for creation of spatially separated subpopulations that subsequently can lead to increased diversity. In contrast to its nonspatial counterpart, our model predicts robust coexistence of a large number of species. It is demonstrated that large species diversity can be obtained on evolutionary time scales, provided that interactions between species have spatial constraints. In particular, a phase transition to a sustainable state of high diversity is identified.
Proceedings of the National Academy of Sciences of the United States of America | 2009
Bjørn Jamtveit; Espen Jettestuen; Joachim Mathiesen
A quantitative characterization of the scale-dependent features of research units may provide important insight into how such units are organized and how they grow. The relative importance of top-down versus bottom-up controls on their growth may be revealed by their scaling properties. Here we show that the number of support staff in Scandinavian research units, ranging in size from 20 to 7,800 staff members, is related to the number of academic staff by a power law. The scaling exponent of ≈1.30 is broadly consistent with a simple hierarchical model of the university organization. Similar scaling behavior between small and large research units with a wide range of ambitions and strategies argues against top-down control of the growth. Top-down effects, and externally imposed effects from changing political environments, can be observed as fluctuations around the main trend. The observed scaling law implies that cost-benefit arguments for merging research institutions into larger and larger units may have limited validity unless the productivity per academic staff and/or the quality of the products are considerably higher in larger institutions. Despite the hierarchical structure of most large-scale research units in Europe, the network structures represented by the academic component of such units are strongly antihierarchical and suboptimal for efficient communication within individual units.