Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jesper Ferkinghoff-Borg is active.

Publication


Featured researches published by Jesper Ferkinghoff-Borg.


Nucleic Acids Research | 2004

SNPeffect: a database mapping molecular phenotypic effects of human non-synonymous coding SNPs

Joke Reumers; Joost Schymkowitz; Jesper Ferkinghoff-Borg; François Stricher; Luis Serrano; Frederic Rousseau

Single nucleotide polymorphisms (SNPs) are an increasingly important tool for genetic and biomedical research. However, the accumulated sequence information on allelic variation is not matched by an understanding of the effect of SNPs on the functional attributes or ‘molecular phenotype’ of a protein. Towards this aim we developed SNPeffect, an online resource of human non-synonymous coding SNPs (nsSNPs) mapping phenotypic effects of allelic variation in human genes. SNPeffect contains 31 659 nsSNPs from 12 480 human proteins. The current release of SNPeffect incorporates data on protein stability, integrity of functional sites, protein phosphorylation and glycosylation, subcellular localization, protein turnover rates, protein aggregation, amyloidosis and chaperone interaction. The SNP entries are accessible through both a search and browse interface and are linked to most major biological databases. The data can be displayed as detailed descriptions of individual SNPs or as an overview of all SNPs for a given protein. SNPeffect will be regularly updated and can be accessed at http://snpeffect.vib.be/.


Proceedings of the National Academy of Sciences of the United States of America | 2008

A generative, probabilistic model of local protein structure

Wouter Boomsma; Kanti V. Mardia; Charles C. Taylor; Jesper Ferkinghoff-Borg; Anders Krogh; Thomas Hamelryck

Despite significant progress in recent years, protein structure prediction maintains its status as one of the prime unsolved problems in computational biology. One of the key remaining challenges is an efficient probabilistic exploration of the structural space that correctly reflects the relative conformational stabilities. Here, we present a fully probabilistic, continuous model of local protein structure in atomic detail. The generative model makes efficient conformational sampling possible and provides a framework for the rigorous analysis of local sequence–structure correlations in the native state. Our method represents a significant theoretical and practical improvement over the widely used fragment assembly technique by avoiding the drawbacks associated with a discrete and nonprobabilistic approach.


PLOS Computational Biology | 2014

Combining Experiments and Simulations Using the Maximum Entropy Principle

Wouter Boomsma; Jesper Ferkinghoff-Borg; Kresten Lindorff-Larsen

A key component of computational biology is to compare the results of computer modelling with experimental measurements. Despite substantial progress in the models and algorithms used in many areas of computational biology, such comparisons sometimes reveal that the computations are not in quantitative agreement with experimental data. The principle of maximum entropy is a general procedure for constructing probability distributions in the light of new data, making it a natural tool in cases when an initial model provides results that are at odds with experiments. The number of maximum entropy applications in our field has grown steadily in recent years, in areas as diverse as sequence analysis, structural modelling, and neurobiology. In this Perspectives article, we give a broad introduction to the method, in an attempt to encourage its further adoption. The general procedure is explained in the context of a simple example, after which we proceed with a real-world application in the field of molecular simulations, where the maximum entropy procedure has recently provided new insight. Given the limited accuracy of force fields, macromolecular simulations sometimes produce results that are at not in complete and quantitative accordance with experiments. A common solution to this problem is to explicitly ensure agreement between the two by perturbing the potential energy function towards the experimental data. So far, a general consensus for how such perturbations should be implemented has been lacking. Three very recent papers have explored this problem using the maximum entropy approach, providing both new theoretical and practical insights to the problem. We highlight each of these contributions in turn and conclude with a discussion on remaining challenges.


PLOS Computational Biology | 2009

A Probabilistic Model of RNA Conformational Space

Jes Frellsen; Ida Moltke; Martin Thiim; Kanti V. Mardia; Jesper Ferkinghoff-Borg; Thomas Hamelryck

The increasing importance of non-coding RNA in biology and medicine has led to a growing interest in the problem of RNA 3-D structure prediction. As is the case for proteins, RNA 3-D structure prediction methods require two key ingredients: an accurate energy function and a conformational sampling procedure. Both are only partly solved problems. Here, we focus on the problem of conformational sampling. The current state of the art solution is based on fragment assembly methods, which construct plausible conformations by stringing together short fragments obtained from experimental structures. However, the discrete nature of the fragments necessitates the use of carefully tuned, unphysical energy functions, and their non-probabilistic nature impairs unbiased sampling. We offer a solution to the sampling problem that removes these important limitations: a probabilistic model of RNA structure that allows efficient sampling of RNA conformations in continuous space, and with associated probabilities. We show that the model captures several key features of RNA structure, such as its rotameric nature and the distribution of the helix lengths. Furthermore, the model readily generates native-like 3-D conformations for 9 out of 10 test structures, solely using coarse-grained base-pairing information. In conclusion, the method provides a theoretical and practical solution for a major bottleneck on the way to routine prediction and simulation of RNA structure and dynamics in atomic detail.


Cell | 2015

Kinome-wide decoding of network-attacking mutations rewiring cancer signaling.

Pau Creixell; Erwin M. Schoof; Craig D. Simpson; James Longden; Chad J. Miller; Hua Jane Lou; Lara Perryman; Thomas R. Cox; Nevena Zivanovic; Antonio Palmeri; Agata Wesolowska-Andersen; Manuela Helmer-Citterich; Jesper Ferkinghoff-Borg; Hiroaki Itamochi; Bernd Bodenmiller; Janine T. Erler; Benjamin E. Turk; Rune Linding

Summary Cancer cells acquire pathological phenotypes through accumulation of mutations that perturb signaling networks. However, global analysis of these events is currently limited. Here, we identify six types of network-attacking mutations (NAMs), including changes in kinase and SH2 modulation, network rewiring, and the genesis and extinction of phosphorylation sites. We developed a computational platform (ReKINect) to identify NAMs and systematically interpreted the exomes and quantitative (phospho-)proteomes of five ovarian cancer cell lines and the global cancer genome repository. We identified and experimentally validated several NAMs, including PKCγ M501I and PKD1 D665N, which encode specificity switches analogous to the appearance of kinases de novo within the kinome. We discover mutant molecular logic gates, a drift toward phospho-threonine signaling, weakening of phosphorylation motifs, and kinase-inactivating hotspots in cancer. Our method pinpoints functional NAMs, scales with the complexity of cancer genomes and cell signaling, and may enhance our capability to therapeutically target tumor-specific networks.


PLOS ONE | 2010

Potentials of Mean Force for Protein Structure Prediction Vindicated, Formalized and Generalized

Thomas Hamelryck; Mikael Borg; Martin Paluszewski; Jonas Paulsen; Jes Frellsen; Christian Andreetta; Wouter Boomsma; Sandro Bottaro; Jesper Ferkinghoff-Borg

Understanding protein structure is of crucial importance in science, medicine and biotechnology. For about two decades, knowledge-based potentials based on pairwise distances – so-called “potentials of mean force” (PMFs) – have been center stage in the prediction and design of protein structure and the simulation of protein folding. However, the validity, scope and limitations of these potentials are still vigorously debated and disputed, and the optimal choice of the reference state – a necessary component of these potentials – is an unsolved problem. PMFs are loosely justified by analogy to the reversible work theorem in statistical physics, or by a statistical argument based on a likelihood function. Both justifications are insightful but leave many questions unanswered. Here, we show for the first time that PMFs can be seen as approximations to quantities that do have a rigorous probabilistic justification: they naturally arise when probability distributions over different features of proteins need to be combined. We call these quantities “reference ratio distributions” deriving from the application of the “reference ratio method.” This new view is not only of theoretical relevance but leads to many insights that are of direct practical use: the reference state is uniquely defined and does not require external physical insights; the approach can be generalized beyond pairwise distances to arbitrary features of protein structure; and it becomes clear for which purposes the use of these quantities is justified. We illustrate these insights with two applications, involving the radius of gyration and hydrogen bonding. In the latter case, we also show how the reference ratio method can be iteratively applied to sculpt an energy funnel. Our results considerably increase the understanding and scope of energy functions derived from known biomolecular structures.


Journal of Chemical Theory and Computation | 2014

Probabilistic Determination of Native State Ensembles of Proteins

Simon Olsson; Beat Vögeli; Andrea Cavalli; Wouter Boomsma; Jesper Ferkinghoff-Borg; Kresten Lindorff-Larsen; Thomas Hamelryck

The motions of biological macromolecules are tightly coupled to their functions. However, while the study of fast motions has become increasingly feasible in recent years, the study of slower, biologically important motions remains difficult. Here, we present a method to construct native state ensembles of proteins by the combination of physical force fields and experimental data through modern statistical methodology. As an example, we use NMR residual dipolar couplings to determine a native state ensemble of the extensively studied third immunoglobulin binding domain of protein G (GB3). The ensemble accurately describes both local and nonlocal backbone fluctuations as judged by its reproduction of complementary experimental data. While it is difficult to assess precise time-scales of the observed motions, our results suggest that it is possible to construct realistic conformational ensembles of biomolecules very efficiently. The approach may allow for a dramatic reduction in the computational as well as experimental resources needed to obtain accurate conformational ensembles of biological macromolecules in a statistically sound manner.


PLOS ONE | 2009

Similarity measures for protein ensembles.

Kresten Lindorff-Larsen; Jesper Ferkinghoff-Borg

Analyses of similarities and changes in protein conformation can provide important information regarding protein function and evolution. Many scores, including the commonly used root mean square deviation, have therefore been developed to quantify the similarities of different protein conformations. However, instead of examining individual conformations it is in many cases more relevant to analyse ensembles of conformations that have been obtained either through experiments or from methods such as molecular dynamics simulations. We here present three approaches that can be used to compare conformational ensembles in the same way as the root mean square deviation is used to compare individual pairs of structures. The methods are based on the estimation of the probability distributions underlying the ensembles and subsequent comparison of these distributions. We first validate the methods using a synthetic example from molecular dynamics simulations. We then apply the algorithms to revisit the problem of ensemble averaging during structure determination of proteins, and find that an ensemble refinement method is able to recover the correct distribution of conformations better than standard single-molecule refinement.


PLOS Computational Biology | 2008

Genome-wide prediction of SH2 domain targets using structural information and the FoldX algorithm.

Ignacio E. Sánchez; Pedro Beltrao; François Stricher; Joost Schymkowitz; Jesper Ferkinghoff-Borg; Frederic Rousseau; Luis Serrano

Current experiments likely cover only a fraction of all protein-protein interactions. Here, we developed a method to predict SH2-mediated protein-protein interactions using the structure of SH2-phosphopeptide complexes and the FoldX algorithm. We show that our approach performs similarly to experimentally derived consensus sequences and substitution matrices at predicting known in vitro and in vivo targets of SH2 domains. We use our method to provide a set of high-confidence interactions for human SH2 domains with known structure filtered on secondary structure and phosphorylation state. We validated the predictions using literature-derived SH2 interactions and a probabilistic score obtained from a naive Bayes integration of information on coexpression, conservation of the interaction in other species, shared interaction partners, and functions. We show how our predictions lead to a new hypothesis for the role of SH2 domains in signaling.


BMC Bioinformatics | 2010

Calculation of accurate small angle X-ray scattering curves from coarse-grained protein models

Kasper Stovgaard; Christian Andreetta; Jesper Ferkinghoff-Borg; Thomas Hamelryck

BackgroundGenome sequencing projects have expanded the gap between the amount of known protein sequences and structures. The limitations of current high resolution structure determination methods make it unlikely that this gap will disappear in the near future. Small angle X-ray scattering (SAXS) is an established low resolution method for routinely determining the structure of proteins in solution. The purpose of this study is to develop a method for the efficient calculation of accurate SAXS curves from coarse-grained protein models. Such a method can for example be used to construct a likelihood function, which is paramount for structure determination based on statistical inference.ResultsWe present a method for the efficient calculation of accurate SAXS curves based on the Debye formula and a set of scattering form factors for dummy atom representations of amino acids. Such a method avoids the computationally costly iteration over all atoms. We estimated the form factors using generated data from a set of high quality protein structures. No ad hoc scaling or correction factors are applied in the calculation of the curves. Two coarse-grained representations of protein structure were investigated; two scattering bodies per amino acid led to significantly better results than a single scattering body.ConclusionWe show that the obtained point estimates allow the calculation of accurate SAXS curves from coarse-grained protein models. The resulting curves are on par with the current state-of-the-art program CRYSOL, which requires full atomic detail. Our method was also comparable to CRYSOL in recognizing native structures among native-like decoys. As a proof-of-concept, we combined the coarse-grained Debye calculation with a previously described probabilistic model of protein structure, TorusDBN. This resulted in a significant improvement in the decoy recognition performance. In conclusion, the presented method shows great promise for use in statistical inference of protein structures from SAXS data.

Collaboration


Dive into the Jesper Ferkinghoff-Borg's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jes Frellsen

University of Copenhagen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Joost Schymkowitz

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Sandro Bottaro

International School for Advanced Studies

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge