Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Joan B. Geisbert is active.

Publication


Featured researches published by Joan B. Geisbert.


Nature Medicine | 2005

Live attenuated recombinant vaccine protects nonhuman primates against Ebola and Marburg viruses

Steven M. Jones; Heinz Feldmann; Ute Ströher; Joan B. Geisbert; Lisa Fernando; Allen Grolla; Hans-Dieter Klenk; Nancy J. Sullivan; Viktor E. Volchkov; Elizabeth A. Fritz; Kathleen M. Daddario; Lisa E. Hensley; Peter B. Jahrling; Thomas W. Geisbert

Vaccines and therapies are urgently needed to address public health needs stemming from emerging pathogens and biological threat agents such as the filoviruses Ebola virus (EBOV) and Marburg virus (MARV). Here, we developed replication-competent vaccines against EBOV and MARV based on attenuated recombinant vesicular stomatitis virus vectors expressing either the EBOV glycoprotein or MARV glycoprotein. A single intramuscular injection of the EBOV or MARV vaccine elicited completely protective immune responses in nonhuman primates against lethal EBOV or MARV challenges. Notably, vaccine vector shedding was not detectable in the monkeys and none of the animals developed fever or other symptoms of illness associated with vaccination. The EBOV vaccine induced humoral and apparent cellular immune responses in all vaccinated monkeys, whereas the MARV vaccine induced a stronger humoral than cellular immune response. No evidence of EBOV or MARV replication was detected in any of the protected animals after challenge. Our data suggest that these vaccine candidates are safe and highly efficacious in a relevant animal model.


Nature | 2003

Accelerated vaccination for Ebola virus haemorrhagic fever in non-human primates.

Nancy J. Sullivan; Thomas W. Geisbert; Joan B. Geisbert; Ling Xu; Zhi-Yong Yang; Mario Roederer; Richard A. Koup; Peter B. Jahrling; Gary J. Nabel

Containment of highly lethal Ebola virus outbreaks poses a serious public health challenge. Although an experimental vaccine has successfully protected non-human primates against disease, more than six months was required to complete the immunizations, making it impractical to limit an acute epidemic. Here, we report the development of accelerated vaccination against Ebola virus in non-human primates. The antibody response to immunization with an adenoviral (ADV) vector encoding the Ebola glycoprotein (GP) was induced more rapidly than with DNA priming and ADV boosting, but it was of lower magnitude. To determine whether this earlier immune response could nonetheless protect against disease, cynomolgus macaques were challenged with Ebola virus after vaccination with ADV–GP and nucleoprotein (NP) vectors. Protection was highly effective and correlated with the generation of Ebola-specific CD8+ T-cell and antibody responses. Even when animals were immunized once with ADV–GP/NP and challenged 28 days later, they remained resistant to challenge with either low or high doses of virus. This accelerated vaccine provides an intervention that may help to limit the epidemic spread of Ebola, and is applicable to other viruses.


The Lancet | 2010

Postexposure protection of non-human primates against a lethal Ebola virus challenge with RNA interference: a proof-of-concept study

Thomas W. Geisbert; Amy C. H. Lee; Marjorie Robbins; Joan B. Geisbert; Anna N. Honko; Vandana Sood; Joshua C. Johnson; Susan de Jong; Iran Tavakoli; Adam Judge; Lisa Hensley; Ian Maclachlan

Summary Background We previously showed that small interfering RNAs (siRNAs) targeting the Zaire Ebola virus (ZEBOV) RNA polymerase L protein formulated in stable nucleic acid-lipid particles (SNALPs) completely protected guineapigs when administered shortly after a lethal ZEBOV challenge. Although rodent models of ZEBOV infection are useful for screening prospective countermeasures, they are frequently not useful for prediction of efficacy in the more stringent non-human primate models. We therefore assessed the efficacy of modified non-immunostimulatory siRNAs in a uniformly lethal non-human primate model of ZEBOV haemorrhagic fever. Methods A combination of modified siRNAs targeting the ZEBOV L polymerase (EK-1 mod), viral protein (VP) 24 (VP24-1160 mod), and VP35 (VP35-855 mod) were formulated in SNALPs. A group of macaques (n=3) was given these pooled anti-ZEBOV siRNAs (2 mg/kg per dose, bolus intravenous infusion) after 30 min, and on days 1, 3, and 5 after challenge with ZEBOV. A second group of macaques (n=4) was given the pooled anti-ZEBOV siRNAs after 30 min, and on days 1, 2, 3, 4, 5, and 6 after challenge with ZEBOV. Findings Two (66%) of three rhesus monkeys given four postexposure treatments of the pooled anti-ZEBOV siRNAs were protected from lethal ZEBOV infection, whereas all macaques given seven postexposure treatments were protected. The treatment regimen in the second study was well tolerated with minor changes in liver enzymes that might have been related to viral infection. Interpretation This complete postexposure protection against ZEBOV in non-human primates provides a model for the treatment of ZEBOV-induced haemorrhagic fever. These data show the potential of RNA interference as an effective postexposure treatment strategy for people infected with Ebola virus, and suggest that this strategy might also be useful for treatment of other emerging viral infections. Funding Defense Threat Reduction Agency.


The Lancet | 2003

Treatment of Ebola virus infection with a recombinant inhibitor of factor VIIa/tissue factor: a study in rhesus monkeys

Thomas W. Geisbert; Lisa E. Hensley; Peter B. Jahrling; Tom Larsen; Joan B. Geisbert; Jason Paragas; Howard A. Young; Terry M Fredeking; William E. Rote; George P. Vlasuk

BACKGROUND Infection with the Ebola virus induces overexpression of the procoagulant tissue factor in primate monocytes and macrophages, suggesting that inhibition of the tissue-factor pathway could ameliorate the effects of Ebola haemorrhagic fever. Here, we tested the notion that blockade of fVIIa/tissue factor is beneficial after infection with Ebola virus. METHODS We used a rhesus macaque model of Ebola haemorrhagic fever, which produces near 100% mortality. We administered recombinant nematode anticoagulant protein c2 (rNAPc2), a potent inhibitor of tissue factor-initiated blood coagulation, to the macaques either 10 min (n=6) or 24 h (n=3) after a high-dose lethal injection of Ebola virus. Three animals served as untreated Ebola virus-positive controls. Historical controls were also used in some analyses. FINDINGS Both treatment regimens prolonged survival time, with a 33% survival rate in each treatment group. Survivors are still alive and healthy after 9 months. All but one of the 17 controls died. The mean survival for the six rNAPc2-treated macaques that died was 11.7 days compared with 8.3 days for untreated controls (p=0.0184). rNAPc2 attenuated the coagulation response as evidenced by modulation of various important coagulation factors, including plasma D dimers, which were reduced in nearly all treated animals; less prominent fibrin deposits and intravascular thromboemboli were observed in tissues of some animals that succumbed to Ebola virus. Furthermore, rNAPc2 attenuated the proinflammatory response with lower plasma concentrations of interleukin 6 and monocyte chemoattractant protein-1 (MCP-1) noted in the treated than in the untreated macaques. INTERPRETATION Post-exposure protection with rNAPc2 against Ebola virus in primates provides a new foundation for therapeutic regimens that target the disease process rather than viral replication.


American Journal of Pathology | 2003

Regular ArticlesPathogenesis of Ebola Hemorrhagic Fever in Cynomolgus Macaques: Evidence that Dendritic Cells Are Early and Sustained Targets of Infection

Thomas W. Geisbert; Lisa E. Hensley; Tom Larsen; Howard A. Young; Douglas S. Reed; Joan B. Geisbert; Dana P. Scott; Elliott Kagan; Peter B. Jahrling; Kelly J. Davis

Ebola virus (EBOV) infection causes a severe and fatal hemorrhagic disease that in many ways appears to be similar in humans and nonhuman primates; however, little is known about the development of EBOV hemorrhagic fever. In the present study, 21 cynomolgus monkeys were experimentally infected with EBOV and examined sequentially over a 6-day period to investigate the pathological events of EBOV infection that lead to death. Importantly, dendritic cells in lymphoid tissues were identified as early and sustained targets of EBOV, implicating their important role in the immunosuppression characteristic of EBOV infections. Bystander lymphocyte apoptosis, previously described in end-stage tissues, occurred early in the disease-course in intravascular and extravascular locations. Of note, apoptosis and loss of NK cells was a prominent finding, suggesting the importance of innate immunity in determining the fate of the host. Analysis of peripheral blood mononuclear cell gene expression showed temporal increases in tumor necrosis factor-related apoptosis-inducing ligand and Fas transcripts, revealing a possible mechanism for the observed bystander apoptosis, while up-regulation of NAIP and cIAP2 mRNA suggest that EBOV has evolved additional mechanisms to resist host defenses by inducing protective transcripts in cells that it infects. The sequence of pathogenetic events identified in this study should provide new targets for rational prophylactic and chemotherapeutic interventions.


PLOS Pathogens | 2007

Effective Post-Exposure Treatment of Ebola Infection

Heinz Feldmann; Steven M. Jones; Kathleen M. Daddario-DiCaprio; Joan B. Geisbert; Ute Ströher; Allen Grolla; Mike Bray; Elizabeth A. Fritz; Lisa Fernando; Friederike Feldmann; Lisa E. Hensley; Thomas W. Geisbert

Ebola viruses are highly lethal human pathogens that have received considerable attention in recent years due to an increasing re-emergence in Central Africa and a potential for use as a biological weapon. There is no vaccine or treatment licensed for human use. In the past, however, important advances have been made in developing preventive vaccines that are protective in animal models. In this regard, we showed that a single injection of a live-attenuated recombinant vesicular stomatitis virus vector expressing the Ebola virus glycoprotein completely protected rodents and nonhuman primates from lethal Ebola challenge. In contrast, progress in developing therapeutic interventions against Ebola virus infections has been much slower and there is clearly an urgent need to develop effective post-exposure strategies to respond to future outbreaks and acts of bioterrorism, as well as to treat laboratory exposures. Here we tested the efficacy of the vesicular stomatitis virus-based Ebola vaccine vector in post-exposure treatment in three relevant animal models. In the guinea pig and mouse models it was possible to protect 50% and 100% of the animals, respectively, following treatment as late as 24 h after lethal challenge. More important, four out of eight rhesus macaques were protected if treated 20 to 30 min following an otherwise uniformly lethal infection. Currently, this approach provides the most effective post-exposure treatment strategy for Ebola infections and is particularly suited for use in accidentally exposed individuals and in the control of secondary transmission during naturally occurring outbreaks or deliberate release.


The Journal of Infectious Diseases | 2006

Postexposure Protection of Guinea Pigs against a Lethal Ebola Virus Challenge Is Conferred by RNA Interference

Thomas W. Geisbert; Lisa E. Hensley; Elliott Kagan; Erik Z. Yu; Joan B. Geisbert; Kathleen M. Daddario-DiCaprio; Elizabeth A. Fritz; Peter B. Jahrling; Kevin McClintock; Janet R. Phelps; Amy C. H. Lee; Adam Judge; Lloyd Jeffs; Ian Maclachlan

Abstract BackgroundEbola virus (EBOV) infection causes a frequently fatal hemorrhagic fever (HF) that is refractory to treatment with currently available antiviral therapeutics. RNA interference represents a powerful, naturally occurring biological strategy for the inhibition of gene expression and has demonstrated utility in the inhibition of viral replication. Here, we describe the development of a potential therapy for EBOV infection that is based on small interfering RNAs (siRNAs) MethodsFour siRNAs targeting the polymerase (L) gene of the Zaire species of EBOV (ZEBOV) were either complexed with polyethylenimine (PEI) or formulated in stable nucleic acid–lipid particles (SNALPs). Guinea pigs were treated with these siRNAs either before or after lethal ZEBOV challenge ResultsTreatment of guinea pigs with a pool of the L gene–specific siRNAs delivered by PEI polyplexes reduced plasma viremia levels and partially protected the animals from death when administered shortly before the ZEBOV challenge. Evaluation of the same pool of siRNAs delivered using SNALPs proved that this system was more efficacious, as it completely protected guinea pigs against viremia and death when administered shortly after the ZEBOV challenge. Additional experiments showed that 1 of the 4 siRNAs alone could completely protect guinea pigs from a lethal ZEBOV challenge ConclusionsFurther development of this technology has the potential to yield effective treatments for EBOV HF as well as for diseases caused by other agents that are considered to be biological threats


PLOS Pathogens | 2007

Neutralizing Antibody Fails to Impact the Course of Ebola Virus Infection in Monkeys

Wendelien B. Oswald; Thomas W. Geisbert; Kelly J. Davis; Joan B. Geisbert; Nancy J. Sullivan; Peter B. Jahrling; Paul W. H. I. Parren; Dennis R. Burton

Prophylaxis with high doses of neutralizing antibody typically offers protection against challenge with viruses producing acute infections. In this study, we have investigated the ability of the neutralizing human monoclonal antibody, KZ52, to protect against Ebola virus in rhesus macaques. This antibody was previously shown to fully protect guinea pigs from infection. Four rhesus macaques were given 50 mg/kg of neutralizing human monoclonal antibody KZ52 intravenously 1 d before challenge with 1,000 plaque-forming units of Ebola virus, followed by a second dose of 50 mg/kg antibody 4 d after challenge. A control animal was exposed to virus in the absence of antibody treatment. Passive transfer of the neutralizing human monoclonal antibody not only failed to protect macaques against challenge with Ebola virus but also had a minimal effect on the explosive viral replication following infection. We show that the inability of antibody to impact infection was not due to neutralization escape. It appears that Ebola virus has a mechanism of infection propagation in vivo in macaques that is uniquely insensitive even to high concentrations of neutralizing antibody.


PLOS Medicine | 2006

Immune Protection of Nonhuman Primates Against Ebola Virus with Single Low-Dose Adenovirus Vectors Encoding Modified GPs

Nancy J. Sullivan; Thomas W. Geisbert; Joan B. Geisbert; Devon J. Shedlock; Ling Xu; Laurie Lamoreaux; Jerome Custers; Paul M. Popernack; Zhi Yong Yang; Maria G. Pau; Mario Roederer; Richard A. Koup; Jaap Goudsmit; Peter B. Jahrling; Gary J. Nabel

Background Ebola virus causes a hemorrhagic fever syndrome that is associated with high mortality in humans. In the absence of effective therapies for Ebola virus infection, the development of a vaccine becomes an important strategy to contain outbreaks. Immunization with DNA and/or replication-defective adenoviral vectors (rAd) encoding the Ebola glycoprotein (GP) and nucleoprotein (NP) has been previously shown to confer specific protective immunity in nonhuman primates. GP can exert cytopathic effects on transfected cells in vitro, and multiple GP forms have been identified in nature, raising the question of which would be optimal for a human vaccine. Methods and Findings To address this question, we have explored the efficacy of mutant GPs from multiple Ebola virus strains with reduced in vitro cytopathicity and analyzed their protective effects in the primate challenge model, with or without NP. Deletion of the GP transmembrane domain eliminated in vitro cytopathicity but reduced its protective efficacy by at least one order of magnitude. In contrast, a point mutation was identified that abolished this cytopathicity but retained immunogenicity and conferred immune protection in the absence of NP. The minimal effective rAd dose was established at 1010 particles, two logs lower than that used previously. Conclusions Expression of specific GPs alone vectored by rAd are sufficient to confer protection against lethal challenge in a relevant nonhuman primate model. Elimination of NP from the vaccine and dose reductions to 1010 rAd particles do not diminish protection and simplify the vaccine, providing the basis for selection of a human vaccine candidate.


Vaccine | 2008

Vesicular stomatitis virus-based vaccines protect nonhuman primates against aerosol challenge with Ebola and Marburg viruses

Thomas W. Geisbert; Kathleen M. Daddario-DiCaprio; Joan B. Geisbert; Douglas S. Reed; Friederike Feldmann; Allen Grolla; Ute Ströher; Elizabeth A. Fritz; Lisa E. Hensley; Steven M. Jones; Heinz Feldmann

Considerable progress has been made over the last decade in developing candidate preventive vaccines that can protect nonhuman primates against Ebola and Marburg viruses. A vaccine based on recombinant vesicular stomatitis virus (VSV) seems to be particularly robust as it can also confer protection when administered as a postexposure treatment. While filoviruses are not thought to be transmitted by aerosol in nature the inhalation route is among the most likely portals of entry in the setting of a bioterrorist event. At present, all candidate filoviral vaccines have been evaluated against parenteral challenges but none have been tested against an aerosol exposure. Here, we evaluated our recombinant VSV-based Zaire ebolavirus (ZEBOV) and Marburg virus (MARV) vaccines against aerosol challenge in cynomolgus macaques. All monkeys vaccinated with a VSV vector expressing the glycoprotein of ZEBOV were completely protected against an aerosol exposure of ZEBOV. Likewise, all monkeys vaccinated with a VSV vector expressing the glycoprotein of MARV were completely protected against an aerosol exposure of MARV. All control animals challenged by the aerosol route with either ZEBOV or MARV succumbed. Interestingly, disease in control animals appeared to progress slower than previously seen in macaques exposed to comparable doses by intramuscular injection.

Collaboration


Dive into the Joan B. Geisbert's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lisa E. Hensley

United States Army Medical Research Institute of Infectious Diseases

View shared research outputs
Top Co-Authors

Avatar

Chad E. Mire

University of Texas Medical Branch

View shared research outputs
Top Co-Authors

Avatar

Heinz Feldmann

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Peter B. Jahrling

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Krystle N. Agans

University of Texas Medical Branch

View shared research outputs
Top Co-Authors

Avatar

Karla A. Fenton

University of Texas Medical Branch

View shared research outputs
Top Co-Authors

Avatar

Kathleen M. Daddario-DiCaprio

Uniformed Services University of the Health Sciences

View shared research outputs
Top Co-Authors

Avatar

Elizabeth A. Fritz

United States Army Medical Research Institute of Infectious Diseases

View shared research outputs
Top Co-Authors

Avatar

Robert W. Cross

University of Texas Medical Branch

View shared research outputs
Researchain Logo
Decentralizing Knowledge