Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Joan E. Hooper is active.

Publication


Featured researches published by Joan E. Hooper.


Cell | 1996

The Drosophila smoothened Gene Encodes a Seven-Pass Membrane Protein, a Putative Receptor for the Hedgehog Signal

Joy Alcedo; Marina Ayzenzon; Tonia Von Ohlen; Markus Noll; Joan E. Hooper

Smoothened (smo) is a segment polarity gene required for correct patterning of every segment in Drosophila. The earliest defect in smo mutant embryos is loss of expression of the Hedgehog-responsive gene wingless between 1 and 2 hr after gastrulation. Since smo mutant embryos cannot respond to exogenous Hedgehog (Hh) but can respond to exogenous Wingless, the smo product functions in Hh signaling. Smo acts downstream of or in parallel to Patched, an antagonist of the Hh signal. The smo gene encodes an integral membrane protein with characteristics of G protein-coupled receptors and shows homology to the Drosophila Frizzled protein. Based on its predicted physical characteristics and on its position in the Hh signaling pathway, we suggest that smo encodes a receptor for the Hh signal.


Cell | 1989

The Drosophila patched gene encodes a putative membrane protein required for segmental patterning

Joan E. Hooper; Matthew P. Scott

The patched (ptc) gene is one of several segment polarity genes required for correct patterning within every segment of Drosophila. The absence of ptc gene function causes a transformation of the fate of cells in the middle part of each segment so that they form pattern elements characteristic of cells positioned around the segment border. Analysis of the mutant phenotype demonstrates that both segment and parasegment borders are included in the duplicated pattern of ptc mutants. We have cloned the ptc gene and deduced that the product is a 1286 amino acid protein with at least seven putative transmembrane alpha helices. ptc RNA is expressed in embryos in broad stripes of segmental periodicity that later split into two stripes per segment primordium. The pattern of expression does not directly predict the transformation seen in ptc mutant embryos, suggesting that ptc participates in cell interactions that establish pattern within the segment.


Current Biology | 2003

Identification of a Functional Interaction between the Transmembrane Protein Smoothened and the Kinesin-Related Protein Costal2

Stacey K. Ogden; Manuel Ascano; Melanie A. Stegman; Liza M. Suber; Joan E. Hooper; David J. Robbins

The hedgehog (Hh) family of morphogens plays important instructional roles in the development of numerous metazoan structures. Consistent with the role Hh homologs play in cell fate determination, aberrant Hh signaling results in numerous human pathologies. Hh signal transduction is initiated when Hh binds to its receptor Patched (Ptc), activating the transmembrane protein Smoothened (Smo). Smo transmits its activation signal to a microtubule-associated Hedgehog signaling complex (HSC). At a minimum, the HSC consists of the Kinesin-related protein Costal2 (Cos2), the protein kinase Fused (Fu), and the transcription factor Cubitus interruptus (Ci). In response to HSC activation, the ratio between repressor and activator forms of Ci is altered, determining the expression levels of various Hh target genes. The steps between Smo activation and signaling to the HSC have not been described. Here, we describe a functional interaction between Smo and Cos2, which is necessary for Hh signaling. We propose that this interaction is direct and allows for activation of Ci in response to Hh. This work fills in the last major gap in our understanding of the Hh signal transduction pathway by suggesting that no intermediate signal is required to connect Smo to the HSC.


The Journal of Comparative Neurology | 1999

EXPRESSION OF SONIC HEDGEHOG, PATCHED, AND GLI1 IN DEVELOPING TASTE PAPILLAE OF THE MOUSE

Joshua M.H Hall; Joan E. Hooper; Thomas E. Finger

Lingual taste buds form within taste papillae, which are specialized structures that develop in a characteristic spatial and temporal pattern. To investigate the signaling events responsible for patterning and morphogenesis of taste papillae, the authors examined the time course and distribution of expression of several related developmental signaling genes as well as the time course of innervation of taste papillae in mouse embryos from embryonic day 12 (E12) to E18. Lingual expression of the signaling molecule Sonic hedgehog (Shh), its receptor Patched (Ptc), and the Shh‐activated transcription factor Gli1 were assayed by using in situ hybridization. Shh is expressed broadly in the lingual epithelium at E12 but becomes progressively restricted to developing circumvallate and fungiform papillary epithelia. Shh is expressed specifically within the central cells of the papillary epithelium starting at E13.5 and persisting through E18. Ptc and Gli1 expression follow a pattern similar to that of Shh. Compared with Shh, Ptc is expressed in larger regions surrounding the central papillary cells and also in the mesenchyme underlying Shh‐expressing epithelium. Innervation of taste papillae was examined by using the panneuronal antibody to ubiquitin carboxyl terminal hydrolase (protein gene product 9.5). Nerves reach the basal lamina of developing taste papillae at E14 to densely innervate the papillary epithelium by E16. Thus, the pattern of Shh expression within developing taste papillae is established prior to innervation, ruling out neuronal induction of papillae. The results suggest that the Shh signaling pathway may be involved in: 1) establishing papillary boundaries in taste papilla morphogenesis, 2) papillary epithelial‐mesenchymal interactions, and/or 3) specifying the location or development of taste buds within taste papillae. J. Comp. Neurol. 406:143–155, 1999.


Development | 2006

Roadkill attenuates Hedgehog responses through degradation of Cubitus interruptus

David Kent; Erik W. Bush; Joan E. Hooper

The final step in Hedgehog (Hh) signal transduction is post-translational regulation of the transcription factor, Cubitus interruptus (Ci). Ci resides in the cytoplasm in a latent form, where Hh regulates its processing into a transcriptional repressor or its nuclear access as a transcriptional activator. Levels of latent Ci are controlled by degradation, with different pathways activated in response to different levels of Hh. Here, we describe the roadkill (rdx) gene, which is expressed in response to Hh. The Rdx protein belongs to a conserved family of proteins that serve as substrate adaptors for Cullin3-mediated ubiquitylation. Overexpression of rdx reduced Ci levels and decreased both transcriptional activation and repression mediated by Ci. Loss of rdx allowed excessive accumulation of Ci. rdx manipulation in the eye revealed a novel role for Hh in the organization and survival of pigment and cone cells. These studies identify rdx as a limiting factor in a feedback loop that attenuates Hh responses through reducing levels of Ci. The existence of human orthologs for Rdx raises the possibility that this novel feedback loop also modulates Hh responses in humans.


Development | 2003

Smoothened translates Hedgehog levels into distinct responses

Joan E. Hooper

In the Drosophila wing, Hedgehog is made by cells of the posterior compartment and acts as a morphogen to pattern cells of the anterior compartment. High Hedgehog levels instruct L3/4 intervein fate, whereas lower levels instruct L3 vein fate. Transcriptional responses to Hedgehog are mediated by the balance between repressor and activator forms of Cubitus interruptus, CiR and CiA. Hedgehog regulates this balance through its receptor, Patched, which acts through Smoothened and thence a regulatory complex that includes Fused, Costal, Suppressor of Fused and Cubitus interruptus. It is not known how the Hedgehog signal is relayed from Smoothened to the regulatory complex nor how responses to different levels of Hedgehog are implemented. We have used chimeric and deleted forms of Smoothened to explore the signaling functions of Smoothened. A Frizzled/Smoothened chimera containing the Smo cytoplasmic tail (FFS) can induce the full spectrum of Hedgehog responses but is regulated by Wingless rather than Hedgehog. Smoothened whose cytoplasmic tail is replaced with that of Frizzled (SSF) mimics fused mutants, interfering with high Hedgehog responses but with no effect on low Hedgehog responses. The cytoplasmic tail of Smoothened with no transmembrane or extracellular domains (SmoC) interferes with high Hedgehog responses and allows endogenous Smoothened to constitutively initiate low responses. SmoC mimics costal mutants. Genetic interactions suggest that SSF interferes with high signaling by titrating out Smoothened, whereas SmoC drives constitutive low signaling by titrating out Costal. These data suggest that low and high signaling (1) are qualitatively different, (2) are mediated by distinct configurations of the regulatory complex and (3) are initiated by distinct activities of Smoothened. We present a model where low signaling is initiated when a Costal inhibitory site on the Smoothened cytoplasmic tail shifts the regulatory complex to its low state. High signaling is initiated when cooperating Smoothened cytoplasmic tails activate Costal and Fused, driving the regulatory complex to its high state. Thus, two activities of Smoothened translate different levels of Hedgehog into distinct intracellular responses.


Oncogene | 2002

The TRC8 hereditary kidney cancer gene suppresses growth and functions with VHL in a common pathway

Robert M. Gemmill; Lynne T. Bemis; Jason P. Lee; M Ali Sozen; Anna E. Barón; Chan Zeng; Paul F. Erickson; Joan E. Hooper; Harry A. Drabkin

VHL is part of an SCF related E3-ubiquitin ligase complex with ‘gatekeeper’ function in renal carcinoma. However, no mutations have been identified in VHL interacting proteins in wild type VHL tumors. We previously reported that the TRC8 gene was interrupted by a t(3;8) translocation in a family with hereditary renal and non-medullary thyroid cancer. TRC8 encodes a multi-membrane spanning protein containing a RING-H2 finger with in vitro ubiquitin ligase activity. We isolated the Drosophila homologue, DTrc8, and studied its function by genetic manipulations and a yeast 2-hybrid screen. Human and Drosophila TRC8 proteins localize to the endoplasmic reticulum. Loss of either DTrc8 or DVhl resulted in an identical ventral midline defect. Direct interaction between DTrc8 and DVhl was confirmed by GST-pulldown and co-immunoprecipitation experiments. CSN-5/JAB1 is a component of the COP9 signalosome, recently shown to regulate SCF function. We found that DTrc8 physically interacts with CSN-5 and that human JAB1 localization is dependent on VHL mutant status. Lastly, overexpression of DTrc8 inhibited growth consistent with its presumed role as a tumor suppressor gene. Thus, VHL, TRC8, and JAB1 appear to be linked both physically and functionally and all three may participate in the development of kidney cancer.


Mechanisms of Development | 1997

Hedgehog signaling regulates transcription through Gli/Ci binding sites in the wingless enhancer.

Tonia Von Ohlen; Joan E. Hooper

The segment polarity gene cubitus interruptus (ci) encodes a transcriptional effector of Hedgehog (Hh) signaling in Drosophila. The Ci gene product is a zinc finger protein belonging to the Gli family of sequence-specific DNA binding proteins. After gastrulation, segmental expression of the segment polarity gene wingless (wg) is maintained by Hh signaling in a pathway requiring Ci activity. In the absence of Hh or Ci activity, wg expression is initiated normally and then fades in the ectoderm after stage 10. We have previously identified a wingless enhancer region whose Ci binding sites mediate Ci-dependent transcriptional activation in transiently transfected cells. Here we demonstrate that Hh and Patched (Ptc) act through those Ci binding sites to modulate the level of Ci-dependent transcriptional activation in S2 cells. We demonstrate that this same wg enhancer region is Hh responsive in vivo and that its Ci binding sites are necessary for its activity. This provides strong evidence that Hh affects wg transcription through post-translational activation of Ci.


Molecular Cancer Research | 2010

The TRC8 Ubiquitin Ligase Is Sterol Regulated and Interacts with Lipid and Protein Biosynthetic Pathways

Jason P. Lee; Anne Brauweiler; Michael Rudolph; Joan E. Hooper; Harry A. Drabkin; Robert M. Gemmill

TRC8/RNF139 encodes an endoplasmic reticulum–resident E3 ubiquitin ligase that inhibits growth in a RING- and ubiquitylation-dependent manner. TRC8 also contains a predicted sterol-sensing domain. Here, we report that TRC8 protein levels are sterol responsive and that it binds and stimulates ubiquitylation of the endoplasmic reticulum anchor protein INSIG. Induction of TRC8 destabilized the precursor forms of the transcription factors SREBP-1 and SREBP-2. Loss of SREBP precursors was proteasome dependent, required a functional RING domain, occurred without generating processed nuclear forms, and suppressed SREBP target genes. TRC8 knockdown had opposite effects in sterol-deprived cells. In Drosophila, growth inhibition by DTrc8 was genetically suppressed by loss of specific Mprlp, Padlp N-terminal domain–containing proteins found in the COP9 signalosome and eIF3. DTrc8 genetically and physically interacted with two eIF3 subunits: eIF3f and eIF3h. Coimmunoprecipitation experiments confirmed these interactions in mammalian cells, and TRC8 overexpression suppressed polysome profiles. Moreover, high–molecular weight ubiquitylated proteins were observed in eIF3 immunoprecipitations from TRC8-overexpressing cells. Thus, TRC8 function may provide a regulatory link between the lipid and protein biosynthetic pathways. Mol Cancer Res; 8(1); 93–106


Results and problems in cell differentiation | 1992

The Molecular Genetic Basis of Positional Information in Insect Segments

Joan E. Hooper; Matthew P. Scott

Pattern formation is the process by which a group of initially unspecified cells organizes itself to generate a precise array of structures. Pattern forming systems as diverse as the vertebrate limb, the insect segment, and the hydra body column, are remarkably resistant to environmental effects and to malicious manipulations perpetrated by researchers. Large variations in the overall size of the organism, the number of cells, and the growth conditions can be tolerated. Injuries result in attempts by the surviving cells to regenerate the pattern. For example, if part of an insect segment is damaged or surgically removed then some or all of the missing structures will be regenerated during subsequent molts. Such regenerative responses to injury are termed “pattern regulation”. Pattern regulation almost certainly reflects the same mechanisms that accommodate variations in cell number and arrangement during normal development. Thus, studies of pattern regulation in response to injury should reveal the processes that form pattern de novo during development.

Collaboration


Dive into the Joan E. Hooper's collaboration.

Top Co-Authors

Avatar

Harry A. Drabkin

Medical University of South Carolina

View shared research outputs
Top Co-Authors

Avatar

Jason P. Lee

University of Colorado Denver

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Robert M. Gemmill

Medical University of South Carolina

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anne Brauweiler

University of Colorado Denver

View shared research outputs
Top Co-Authors

Avatar

Hong Li

University of Colorado Denver

View shared research outputs
Top Co-Authors

Avatar

Richard A. Spritz

University of Colorado Denver

View shared research outputs
Top Co-Authors

Avatar

Trevor Williams

University of Colorado Denver

View shared research outputs
Top Co-Authors

Avatar

Tzulip Phang

University of Colorado Denver

View shared research outputs
Researchain Logo
Decentralizing Knowledge