Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Joan M. Hebert is active.

Publication


Featured researches published by Joan M. Hebert.


American Journal of Human Genetics | 1999

A Genomic Screen of Autism: Evidence for a Multilocus Etiology

Neil Risch; Donna Spiker; Linda Lotspeich; Nassim Nouri; David A. Hinds; Joachim Hallmayer; Luba Kalaydjieva; Patty McCague; Sue Dimiceli; Tawna Pitts; Loan Nguyen; Joan Yang; Courtney Harper; Danielle Thorpe; Saritha Vermeer; Helena Young; Joan M. Hebert; Alice Lin; Joan Ferguson; Carla Chiotti; Susan Wiese‐Slater; Tamara Rogers; Boyd Salmon; Peter Nicholas; P. Brent Petersen; Carmen Pingree; William M. McMahon; Dona L. Wong; Luigi Luca Cavalli-Sforza; Helena C. Kraemer

We have conducted a genome screen of autism, by linkage analysis in an initial set of 90 multiplex sibships, with parents, containing 97 independent affected sib pairs (ASPs), with follow-up in 49 additional multiplex sibships, containing 50 ASPs. In total, 519 markers were genotyped, including 362 for the initial screen, and an additional 157 were genotyped in the follow-up. As a control, we also included in the analysis unaffected sibs, which provided 51 discordant sib pairs (DSPs) for the initial screen and 29 for the follow-up. In the initial phase of the work, we observed increased identity by descent (IBD) in the ASPs (sharing of 51.6%) compared with the DSPs (sharing of 50.8%). The excess sharing in the ASPs could not be attributed to the effect of a small number of loci but, rather, was due to the modest increase in the entire distribution of IBD. These results are most compatible with a model specifying a large number of loci (perhaps >/=15) and are less compatible with models specifying </=10 loci. The largest LOD score obtained in the initial scan was for a marker on chromosome 1p; this region also showed positive sharing in the replication family set, giving a maximum multipoint LOD score of 2.15 for both sets combined. Thus, there may exist a gene of moderate effect in this region. We had only modestly positive or negative linkage evidence in candidate regions identified in other studies. Our results suggest that positional cloning of susceptibility loci by linkage analysis may be a formidable task and that other approaches may be necessary.


The Lancet | 2010

Clinical assessment incorporating a personal genome

Euan A. Ashley; Atul J. Butte; Matthew T. Wheeler; Rong Chen; Teri E. Klein; Frederick E. Dewey; Joel T. Dudley; Kelly E. Ormond; Aleksandra Pavlovic; Alexander A. Morgan; Dmitry Pushkarev; Norma F. Neff; Louanne Hudgins; Li Gong; Laura M. Hodges; Dorit S. Berlin; Caroline F. Thorn; Joan M. Hebert; Mark Woon; Hersh Sagreiya; Ryan Whaley; Joshua W. Knowles; Michael F. Chou; Joseph V. Thakuria; Abraham M. Rosenbaum; Alexander Wait Zaranek; George M. Church; Henry T. Greely; Stephen R. Quake; Russ B. Altman

BACKGROUND The cost of genomic information has fallen steeply, but the clinical translation of genetic risk estimates remains unclear. We aimed to undertake an integrated analysis of a complete human genome in a clinical context. METHODS We assessed a patient with a family history of vascular disease and early sudden death. Clinical assessment included analysis of this patients full genome sequence, risk prediction for coronary artery disease, screening for causes of sudden cardiac death, and genetic counselling. Genetic analysis included the development of novel methods for the integration of whole genome and clinical risk. Disease and risk analysis focused on prediction of genetic risk of variants associated with mendelian disease, recognised drug responses, and pathogenicity for novel variants. We queried disease-specific mutation databases and pharmacogenomics databases to identify genes and mutations with known associations with disease and drug response. We estimated post-test probabilities of disease by applying likelihood ratios derived from integration of multiple common variants to age-appropriate and sex-appropriate pre-test probabilities. We also accounted for gene-environment interactions and conditionally dependent risks. FINDINGS Analysis of 2.6 million single nucleotide polymorphisms and 752 copy number variations showed increased genetic risk for myocardial infarction, type 2 diabetes, and some cancers. We discovered rare variants in three genes that are clinically associated with sudden cardiac death-TMEM43, DSP, and MYBPC3. A variant in LPA was consistent with a family history of coronary artery disease. The patient had a heterozygous null mutation in CYP2C19 suggesting probable clopidogrel resistance, several variants associated with a positive response to lipid-lowering therapy, and variants in CYP4F2 and VKORC1 that suggest he might have a low initial dosing requirement for warfarin. Many variants of uncertain importance were reported. INTERPRETATION Although challenges remain, our results suggest that whole-genome sequencing can yield useful and clinically relevant information for individual patients. FUNDING National Institute of General Medical Sciences; National Heart, Lung And Blood Institute; National Human Genome Research Institute; Howard Hughes Medical Institute; National Library of Medicine, Lucile Packard Foundation for Childrens Health; Hewlett Packard Foundation; Breetwor Family Foundation.


Clinical Pharmacology & Therapeutics | 2012

Pharmacogenomics Knowledge for Personalized Medicine

Michelle Whirl-Carrillo; Ellen M. McDonagh; Joan M. Hebert; Li Gong; Caroline F. Thorn; Russ B. Altman; Teri E. Klein

The Pharmacogenomics Knowledgebase (PharmGKB) is a resource that collects, curates, and disseminates information about the impact of human genetic variation on drug responses. It provides clinically relevant information, including dosing guidelines, annotated drug labels, and potentially actionable gene–drug associations and genotype–phenotype relationships. Curators assign levels of evidence to variant–drug associations using well‐defined criteria based on careful literature review. Thus, PharmGKB is a useful source of high‐quality information supporting personalized medicine–implementation projects.


Nucleic Acids Research | 2003

The Stanford Microarray Database: data access and quality assessment tools

Jeremy Gollub; Catherine A. Ball; Gail Binkley; Janos Demeter; David B. Finkelstein; Joan M. Hebert; Tina Hernandez-Boussard; Heng Jin; John C. Matese; Mark Schroeder; Patrick O. Brown; David Botstein; Gavin Sherlock

The Stanford Microarray Database (SMD; http://genome-www.stanford.edu/microarray/) serves as a microarray research database for Stanford investigators and their collaborators. In addition, SMD functions as a resource for the entire scientific community, by making freely available all of its source code and providing full public access to data published by SMD users, along with many tools to explore and analyze those data. SMD currently provides public access to data from 3500 microarrays, including data from 85 publications, and this total is increasing rapidly. In this article, we describe some of SMDs newer tools for accessing public data, assessing data quality and for data analysis.


Nucleic Acids Research | 2004

The Stanford Microarray Database accommodates additional microarray platforms and data formats

Catherine A. Ball; Ihab A. B. Awad; Janos Demeter; Jeremy Gollub; Joan M. Hebert; Tina Hernandez-Boussard; Heng Jin; John C. Matese; Michael Nitzberg; Farrell Wymore; Zachariah K. Zachariah; Patrick O. Brown; Gavin Sherlock

The Stanford Microarray Database (SMD) (http://smd.stanford.edu) is a research tool for hundreds of Stanford researchers and their collaborators. In addition, SMD functions as a resource for the entire biological research community by providing unrestricted access to microarray data published by SMD users and by disseminating its source code. In addition to storing GenePix (Axon Instruments) and ScanAlyze output from spotted microarrays, SMD has recently added the ability to store, retrieve, display and analyze the complete raw data produced by several additional microarray platforms and image analysis software packages, so that we can also now accept data from Affymetrix GeneChips (MAS5/GCOS or dChip), Agilent Catalog or Custom arrays (using Agilents Feature Extraction software) or data created by SpotReader (Niles Scientific). We have implemented software that allows us to accept MAGE-ML documents from array manufacturers and to submit MIAME-compliant data in MAGE-ML format directly to ArrayExpress and GEO, greatly increasing the ease with which data from SMD can be published adhering to accepted standards and also increasing the accessibility of published microarray data to the general public. We have introduced a new tool to facilitate data sharing among our users, so that datasets can be shared during, before or after the completion of data analysis. The latest version of the source code for the complete database package was released in November 2004 (http://smd.stanford.edu/download/), allowing researchers around the world to deploy their own installations of SMD.


PLOS Genetics | 2011

Phased Whole-Genome Genetic Risk in a Family Quartet Using a Major Allele Reference Sequence

Frederick E. Dewey; Rong Chen; Sergio Cordero; Kelly E. Ormond; Colleen Caleshu; Konrad J. Karczewski; Michelle Whirl-Carrillo; Matthew T. Wheeler; Joel T. Dudley; Jake K. Byrnes; Omar E. Cornejo; Joshua W. Knowles; Mark Woon; Li Gong; Caroline F. Thorn; Joan M. Hebert; Emidio Capriotti; Sean P. David; Aleksandra Pavlovic; Anne West; Joseph V. Thakuria; Madeleine Ball; Alexander Wait Zaranek; Heidi L. Rehm; George M. Church; John West; Carlos Bustamante; Michael Snyder; Russ B. Altman; Teri E. Klein

Whole-genome sequencing harbors unprecedented potential for characterization of individual and family genetic variation. Here, we develop a novel synthetic human reference sequence that is ethnically concordant and use it for the analysis of genomes from a nuclear family with history of familial thrombophilia. We demonstrate that the use of the major allele reference sequence results in improved genotype accuracy for disease-associated variant loci. We infer recombination sites to the lowest median resolution demonstrated to date (<1,000 base pairs). We use family inheritance state analysis to control sequencing error and inform family-wide haplotype phasing, allowing quantification of genome-wide compound heterozygosity. We develop a sequence-based methodology for Human Leukocyte Antigen typing that contributes to disease risk prediction. Finally, we advance methods for analysis of disease and pharmacogenomic risk across the coding and non-coding genome that incorporate phased variant data. We show these methods are capable of identifying multigenic risk for inherited thrombophilia and informing the appropriate pharmacological therapy. These ethnicity-specific, family-based approaches to interpretation of genetic variation are emblematic of the next generation of genetic risk assessment using whole-genome sequencing.


Clinical Pharmacology & Therapeutics | 2014

CYP2D6 Genotype and Adjuvant Tamoxifen: Meta‐Analysis of Heterogeneous Study Populations

Michael A. Province; Matthew P. Goetz; Hiltrud Brauch; David A. Flockhart; Joan M. Hebert; Ryan Whaley; V J Suman; W Schroth; Stefan Winter; Hitoshi Zembutsu; Taisei Mushiroda; William G. Newman; M-T M Lee; Christine B. Ambrosone; Matthias W. Beckmann; J-Y Choi; A-S Dieudonné; Peter A. Fasching; R Ferraldeschi; Li Gong; E Haschke-Becher; Anthony Howell; Lee Jordan; Ute Hamann; K Kiyotani; P Krippl; Diether Lambrechts; Ayse Latif; U Langsenlehner; Wendy Lorizio

The International Tamoxifen Pharmacogenomics Consortium was established to address the controversy regarding cytochrome P450 2D6 (CYP2D6) status and clinical outcomes in tamoxifen therapy. We performed a meta‐analysis on data from 4,973 tamoxifen‐treated patients (12 globally distributed sites). Using strict eligibility requirements (postmenopausal women with estrogen receptor–positive breast cancer, receiving 20 mg/day tamoxifen for 5 years, criterion 1); CYP2D6 poor metabolizer status was associated with poorer invasive disease–free survival (IDFS: hazard ratio = 1.25; 95% confidence interval = 1.06, 1.47; P = 0.009). However, CYP2D6 status was not statistically significant when tamoxifen duration, menopausal status, and annual follow‐up were not specified (criterion 2, n = 2,443; P = 0.25) or when no exclusions were applied (criterion 3, n = 4,935; P = 0.38). Although CYP2D6 is a strong predictor of IDFS using strict inclusion criteria, because the results are not robust to inclusion criteria (these were not defined a priori), prospective studies are necessary to fully establish the value of CYP2D6 genotyping in tamoxifen therapy.


Nucleic Acids Research | 2007

The pharmacogenetics and pharmacogenomics knowledge base: accentuating the knowledge

Tina Hernandez-Boussard; Michelle Whirl-Carrillo; Joan M. Hebert; Li Gong; Ryan P. Owen; Mei Gong; Winston Gor; Feng Liu; Chuong Truong; Ryan Whaley; Mark Woon; Tina Zhou; Russ B. Altman; Teri E. Klein

PharmGKB is a knowledge base that captures the relationships between drugs, diseases/phenotypes and genes involved in pharmacokinetics (PK) and pharmacodynamics (PD). This information includes literature annotations, primary data sets, PK and PD pathways, and expert-generated summaries of PK/PD relationships between drugs, diseases/phenotypes and genes. PharmGKBs website is designed to effectively disseminate knowledge to meet the needs of our users. PharmGKB currently has literature annotations documenting the relationship of over 500 drugs, 450 diseases and 600 variant genes. In order to meet the needs of whole genome studies, PharmGKB has added new functionalities, including browsing the variant display by chromosome and cytogenetic locations, allowing the user to view variants not located within a gene. We have developed new infrastructure for handling whole genome data, including increased methods for quality control and tools for comparison across other data sources, such as dbSNP, JSNP and HapMap data. PharmGKB has also added functionality to accept, store, display and query high throughput SNP array data. These changes allow us to capture more structured information on phenotypes for better cataloging and comparison of data. PharmGKB is available at www.pharmgkb.org


American Journal of Human Genetics | 2000

Full-Genome Scan for Linkage in 50 Families Segregating the Bipolar Affective Disease Phenotype

Carl Friddle; Rebecca Koskela; Koustubh Ranade; Joan M. Hebert; Michele Cargill; Chris D. Clark; Sylvia G. Simpson; Francis J. McMahon; O. Colin Stine; Deborah A. Meyers; Jianfeng Xu; Dean F. MacKinnon; Theresa Swift-Scanlan; Kay Redfield Jamison; Susan E. Folstein; Mark J. Daly; Leonid Kruglyak; Thomas G. Marr; J. Raymond DePaulo; David Botstein

A genome scan of approximately 12-cM initial resolution was done on 50 of a set of 51 carefully ascertained unilineal multiplex families segregating the bipolar affective disorder phenotype. In addition to standard multipoint linkage analysis methods, a simultaneous-search algorithm was applied in an attempt to surmount the problem of genetic heterogeneity. The results revealed no linkage across the genome. The results exclude monogenic models and make it unlikely that two genes account for the disease in this sample. These results support the conclusion that at least several hundred kindreds will be required in order to establish linkage of susceptibility loci to bipolar disorder in heterogeneous populations.


American Journal of Hypertension | 2003

A Genome Scan for Hypertension Susceptibility Loci in Populations of Chinese and Japanese Origins

Koustubh Ranade; David A. Hinds; Chao A. Hsiung; Lee-Ming Chuang; Mau-Song Chang; Ying-Tsung Chen; Robert Pesich; Joan M. Hebert; Yii-Der I. Chen; Victor J. Dzau; Richard A. Olshen; David Curb; David Botstein; David R. Cox; Neil Risch

BACKGROUND Our understanding of genes that predispose to essential hypertension is poor. METHODS A genome-wide scan for linkage at approximately 10 cM resolution was done on 1425 sibpairs of Chinese and Japanese origins that were concordant for hypertension (N = 661), low-normal blood pressure (BP) (N = 184), or discordant for BP (N = 580). RESULTS There was no significant evidence of linkage to a single locus in the genome. There was suggestive evidence of linkage to chromosome 10p, with a LOD score of 2.5. CONCLUSIONS We can exclude the possibility that a single gene accounts for at least 15% of the variance in hypertension in this population.

Collaboration


Dive into the Joan M. Hebert's collaboration.

Top Co-Authors

Avatar

Anne M. Bowcock

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Neil Risch

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge