Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Joan P. Graves is active.

Publication


Featured researches published by Joan P. Graves.


Circulation Research | 2004

Enhanced Postischemic Functional Recovery in CYP2J2 Transgenic Hearts Involves Mitochondrial ATP-Sensitive K+ Channels and p42/p44 MAPK Pathway

John M. Seubert; Baichun Yang; J. Alyce Bradbury; Joan P. Graves; Laura M. DeGraff; Scott A. Gabel; Rebecca Gooch; Julie F. Foley; John W. Newman; Lan Mao; Howard A. Rockman; Bruce D. Hammock; Elizabeth Murphy; Darryl C. Zeldin

Human CYP2J2 is abundant in heart and active in the biosynthesis of epoxyeicosatrienoic acids (EETs); however, the functional role of this P450 and its eicosanoid products in the heart remains unknown. Transgenic mice with cardiomyocyte-specific overexpression of CYP2J2 were generated. CYP2J2 transgenic (Tr) mice have normal heart anatomy and basal contractile function. CYP2J2 Tr hearts have improved recovery of left ventricular developed pressure (LVDP) compared with wild-type (WT) hearts after 20 minutes ischemia and 40 minutes reperfusion. Perfusion with the selective P450 epoxygenase inhibitor N-methylsulphonyl-6-(2-proparglyloxyphenyl)hexanamide (MS-PPOH) for 20 minutes before ischemia results in reduced postischemic LVDP recovery in WT hearts and abolishes the improved postischemic LVDP recovery in CYP2J2 Tr hearts. Perfusion with the ATP-sensitive K+ channel (KATP) inhibitor glibenclamide (GLIB) or the mitochondrial KATP (mitoKATP) inhibitor 5-hydroxydecanoate (5-HD) for 20 minutes before ischemia abolishes the cardioprotective effects of CYP2J2 overexpression. Flavoprotein fluorescence, a marker of mitoKATP activity, is higher in cardiomyocytes from CYP2J2 Tr versus WT mice. Moreover, CYP2J2-derived EETs (1 to 5 &mgr;mol/L) increase flavoprotein fluorescence in WT cardiomyocytes. CYP2J2 Tr mice exhibit increased expression of phospho-p42/p44 mitogen-activated protein kinase (MAPK) after ischemia, and addition of the p42/p44 MAPK kinase (MEK) inhibitor PD98059 during reperfusion abolishes the cardioprotective effects of CYP2J2 overexpression. Together, these data suggest that CYP2J2-derived metabolites are cardioprotective after ischemia, and the mechanism for this cardioprotection involves activation of mitoKATP and p42/p44 MAPK.


Circulation Research | 2006

Role of Soluble Epoxide Hydrolase in Postischemic Recovery of Heart Contractile Function

John M. Seubert; Christopher J. Sinal; Joan P. Graves; Laura M. DeGraff; J. Alyce Bradbury; Craig R. Lee; Kerry B. Goralski; Michelle A. Carey; Ayala Luria; John W. Newman; Bruce D. Hammock; John R. Falck; Holly Roberts; Howard A. Rockman; Elizabeth Murphy; Darryl C. Zeldin

Cytochrome P450 epoxygenases metabolize arachidonic acid to epoxyeicosatrienoic acids (EETs) which are converted to dihydroxyeicosatrienoic acids (DHETs) by soluble epoxide hydrolase (Ephx2, sEH). To examine the functional role of sEH in the heart, mice with targeted disruption of the Ephx2 gene were studied. Hearts from sEH null mice have undetectable levels of sEH mRNA and protein and cannot convert EETs to DHETs. sEH null mice have normal heart anatomy and basal contractile function, but have higher fatty acid epoxide:diol ratios in plasma and cardiomyocyte cell culture media compared with wild type (WT). sEH null hearts have improved recovery of left ventricular developed pressure (LVDP) and less infarction compared with WT hearts after 20 minutes ischemia. Perfusion with the putative EET receptor antagonist 14,15-epoxyeicosa-5(Z)-enoic acid (10 to 100 nmol/L) before ischemia abolishes this cardioprotective phenotype. Inhibitor studies demonstrate that perfusion with phosphatidylinositol-3 kinase (PI3K) inhibitors wortmannin (200 nmol/L) or LY294002 (5 &mgr;mol/L), the ATP-sensitive K+ channel (KATP) inhibitor glibenclamide (1 &mgr;mol/L), the mitochondrial KATP (mitoKATP) inhibitor 5-hydroxydecanoate (100 to 200 &mgr;mol/L), or the Ca2+-sensitive K+ channel (KCa) inhibitor paxilline (10 &mgr;mol/L) abolishes the cardioprotection in sEH null hearts. Consistent with increased activation of the PI3K cascade, sEH null mice exhibit increased cardiac expression of glycogen synthase kinase-3&bgr; (GSK-3&bgr;) phospho-protein after ischemia. Together, these data suggest that targeted disruption of sEH increases the availability of cardioprotective EETs that work by activating PI3K signaling pathways and K+ channels.


The FASEB Journal | 2010

Endothelial expression of human cytochrome P450 epoxygenases lowers blood pressure and attenuates hypertension-induced renal injury in mice

Craig R. Lee; John D. Imig; Matthew L. Edin; Julie F. Foley; Laura M. DeGraff; J. Alyce Bradbury; Joan P. Graves; Fred B. Lih; James A. Clark; Page Myers; A. Ligon Perrow; Adrienne Lepp; M. Alison Kannon; Oline K. Rønnekleiv; Nabil J. Alkayed; John R. Falck; Kenneth B. Tomer; Darryl C. Zeldin

Renal cytochrome P450 (CYP)‐derived epoxyeicosatrienoic acids (EETs) regulate sodium transport and blood pressure. Although endothelial CYP‐derived EETs are potent vasodilators, their contribution to the regulation of blood pressure remains unclear. Consequently, we developed transgenic mice with endothelial expression of the human CYP2J2 and CYP2C8 epoxygenases to increase endothelial EET biosynthesis. Compared to wild‐type littermate controls, an attenuated afferent arteriole constrictor response to endothelin‐1 and enhanced dilator response to acetylcholine was observed in CYP2J2 and CYP2C8 transgenic mice. CYP2J2 and CYP2C8 transgenic mice demonstrated modestly, but not significantly, lower mean arterial pressure under basal conditions compared to wild‐type controls. However, mean arterial pressure was significantly lower in both CYP2J2 and CYP2C8 transgenic mice during coadministration of N‐nitro‐l‐arginine methyl ester and indomethacin. In a separate experiment, a high‐salt diet and subcutaneous angiotensin II was administered over 4 wk. The angiotensin/high‐salt‐induced increase in systolic blood pressure, proteinuria, and glomerular injury was significantly attenuated in CYP2J2 and CYP2C8 transgenic mice compared to wild‐type controls. Collectively, these data demonstrate that increased endothelial CYP epoxygenase expression attenuates afferent arteriolar constrictor reactivity and hypertension‐induced increases in blood pressure and renal injury in mice. We conclude that endothelial CYP epoxygenase function contributes to the regulation of blood pressure.—Lee, C. R., Imig, J. D., Edin, M. E., Foley, J., DeGraff, L. M., Bradbury, J. A., Graves, J. P., Lih, F. B., Clark, J., Myers, P., Perrow, A. L., Lepp, A. N., Kannon, M. A., Ronnekleiv, O. K., Alkayed, N.J., Falck, J. R., Tomer, K B., Zeldin, D. C. Endothelial expression of human cytochrome P450 epoxygenases lowers blood pressure and attenuates hypertension‐induced renal injury in mice. FASEB J. 24, 3770–3781 (2010). www.fasebj.org


The FASEB Journal | 2011

Endothelial CYP epoxygenase overexpression and soluble epoxide hydrolase disruption attenuate acute vascular inflammatory responses in mice

Yangmei Deng; Matthew L. Edin; Katherine N. Theken; Robert N. Schuck; Gordon P. Flake; M. Alison Kannon; Laura M. DeGraff; Fred B. Lih; Julie F. Foley; J. Alyce Bradbury; Joan P. Graves; Kenneth B. Tomer; John R. Falck; Darryl C. Zeldin; Craig R. Lee

Cytochrome P‐450 (CYP)‐derived epoxyei‐cosatrienoic acids (EETs) possess potent anti‐inflammatory effects in vitro. However, the effect of increased CYP‐mediated EET biosynthesis and decreased soluble epoxide hydrolase (sEH, Ephx2)‐mediated EET hydrolysis on vascular inflammation in vivo has not been rigorously investigated. Consequently, we characterized acute vascular inflammatory responses to endotoxin in transgenic mice with endothelial expression of the human CYP2J2 and CYP2C8 epoxygenases and mice with targeted disruption of Ephx2. Compared to wild‐type controls, CYP2J2 transgenic, CYP2C8 transgenic, and Ephx2−/− mice each exhibited a significant attenuation of endotoxin‐induced activation of nuclear factor (NF)‐κB signaling, cellular adhesion molecule, chemokine and cytokine expression, and neutrophil infiltration in lung in vivo. Furthermore, attenuation of endotoxin‐induced NF‐κB activation and cellular adhesion molecule and chemokine expression was observed in primary pulmonary endothelial cells isolated from CYP2J2 and CYP2C8 transgenic mice. This attenuationwas inhibited bya putative EET receptor antagonist and CYP epoxygenase inhibitor, directly implicating CYP epoxygenase‐derived EETs with the observed anti‐inflammatory phenotype. Collectively, these data demonstrate that potentiation of the CYP epoxygenase pathway by either increased endothelial EET biosynthesis or globally decreased EET hydrolysis attenuates NF‐κB‐dependent vascular inflammatory responses in vivo and may serve as a viable anti‐inflammatory therapeutic strategy.—Deng, Y., Edin, M. L., Theken, K N., Schuck, R N., Flake, G. P., Kannon, M. A., DeGraff, L. M., Lih, F. B., Foley, J., Bradbury, J. A., Graves, J. P., Tomer, K. B., Falck, J. R., Zeldin, D. C., Lee, C. R. Endothelial CYP epoxygenase overexpression and soluble epoxide hydrolase disruption attenuate acute vascular inflammatory responses in mice. FASEB J. 25, 703–713 (2011). www.fasebj.org


The FASEB Journal | 2011

Endothelial expression of human cytochrome P450 epoxygenase CYP2C8 increases susceptibility to ischemia-reperfusion injury in isolated mouse heart

Matthew L. Edin; ZhongJing Wang; J. Alyce Bradbury; Joan P. Graves; Fred B. Lih; Laura M. DeGraff; Julie F. Foley; Robert Torphy; Oline K. Rønnekleiv; Kenneth B. Tomer; Craig R. Lee; Darryl C. Zeldin

Cytochrome P450 (CYP) epoxygenases CYP2C8 and CYP2J2 generate epoxyeicosatrienoic acids (EETs) from arachidonic acid. Mice with expression of CYP2J2 in cardiomyocytes (αMHC‐CYP2J2 Tr) or treated with synthetic EETs have increased functional recovery after ischemia/reperfusion (I/R); however, no studies have examined the role of cardiomyocyte‐ vs. endothelial‐derived EETs or compared the effects of different CYP epoxygenase isoforms in the ischemic heart. We generated transgenic mice with increased endothelial EET biosynthesis (Tie2‐CYP2C8 Tr and Tie2‐CYP2J2 Tr) or EET hydrolysis (Tie2‐sEH Tr). Compared to wild‐type (WT), αMHC‐CYP2J2 Tr hearts showed increased recovery of left ventricular developed pressure (LVDP) and decreased infarct size after I/R. In contrast, LVDP recovery and infarct size were unchanged in Tie2‐CYP2J2 Tr and Tie2‐sEH Tr hearts. Surprisingly, compared to WT, Tie2‐CYP2C8 Tr hearts had significantly reduced LVDP recovery (from 21 to 14%) and increased infarct size after I/R (from 51 to 61%). Tie2‐CYP2C8 Tr hearts also exhibited increased reactive oxygen species (ROS) generation, dihydroxyoctadecenoic acid (DiHOME) formation, and coronary resistance after I/R. ROS scavengers and CYP2C8 inhibition reversed the detrimental effects of CYP2C8 expression in Tie2‐CYP2C8 Tr hearts. Treatment of WT hearts with 250 nM 9,10‐DiHOME decreased LVDP recovery compared to vehicle (16 vs. 31%, respectively) and increased coronary resistance after I/R. These data demonstrate that increased ROS generation and enhanced DiHOME synthesis by endothelial CYP2C8 impair functional recovery and mask the beneficial effects of increased EET production following I/R.—Edin, M. L., Wang, Z. J., Bradbury, J. A., Graves, J. P., Lih, F. B., DeGraff, L. M., Foley, J. F., Torphy, R., Ronnekleiv, O. K., Tomer, K. B., Lee, C. R., Zeldin, D. C. Endothelial expression of human cytochrome P450 epoxygenase CYP2C8 increases susceptibility to ischemia‐reperfusion injury in isolated mouse heart. FASEB J. 25, 3436–3447 (2011). www.fasebj.org


Development | 2003

Graded phenotypic response to partial and complete deficiency of a brain-specific transcript variant of the winged helix transcription factor RFX4.

Perry J. Blackshear; Joan P. Graves; Deborah Stumpo; Inma Cobos; John L.R. Rubenstein; Darryl C. Zeldin

One line of mice harboring a cardiac-specific epoxygenase transgene developed head swelling and rapid neurological decline in young adulthood, and had marked hydrocephalus of the lateral and third ventricles. The transgene was found to be inserted into an intron in the mouse Rfx4 locus. This insertion apparently prevented expression of a novel variant transcript of RFX4 (RFX4_v3), a member of the regulatory factor X family of winged helix transcription factors. Interruption of two alleles resulted in profound failure of dorsal midline brain structure formation and perinatal death, presumably by interfering with expression of downstream genes. Interruption of a single allele prevented formation of the subcommissural organ, a structure important for cerebrospinal fluid flow through the aqueduct of Sylvius, and resulted in congenital hydrocephalus. These data implicate the RFX4_v3 variant transcript as being crucial for early brain development, as well as for the genesis of the subcommissural organ. These findings may be relevant to human congenital hydrocephalus, a birth defect that affects ∼0.6 per 1000 newborns.


American Journal of Physiology-heart and Circulatory Physiology | 2009

Overexpression of CYP2J2 provides protection against doxorubicin-induced cardiotoxicity

Yunfang Zhang; Haitham El-Sikhry; Ketul R. Chaudhary; Sri Nagarjun Batchu; Anooshirvan Shayeganpour; Taibeh Orujy Jukar; J. Alyce Bradbury; Joan P. Graves; Laura M. DeGraff; Page Myers; Douglas C. Rouse; Julie F. Foley; Abraham Nyska; Darryl C. Zeldin; John M. Seubert

Human cytochrome P-450 (CYP)2J2 is abundant in heart and active in biosynthesis of epoxyeicosatrienoic acids (EETs). Recently, we demonstrated that these eicosanoid products protect myocardium from ischemia-reperfusion injury. The present study utilized transgenic (Tr) mice with cardiomyocyte-specific overexpression of human CYP2J2 to investigate protection toward toxicity resulting from acute (0, 5, or 15 mg/kg daily for 3 days, followed by 24-h recovery) or chronic (0, 1.5, or 3.0 mg/kg biweekly for 5 wk, followed by 2-wk recovery) doxorubicin (Dox) administration. Acute treatment resulted in marked elevations of serum lactate dehydrogenase and creatine kinase levels that were significantly greater in wild-type (WT) than CYP2J2 Tr mice. Acute treatment also resulted in less activation of stress response enzymes in CYP2J2 Tr mice (catalase 750% vs. 300% of baseline, caspase-3 235% vs. 165% of baseline in WT vs. CYP2J2 Tr mice). Moreover, CYP2J2 Tr hearts exhibited less Dox-induced cardiomyocytes apoptosis (measured by TUNEL) compared with WT hearts. After chronic treatment, comparable decreases in body weight were observed in WT and CYP2J2 Tr mice. However, cardiac function, assessed by measurement of fractional shortening with M-mode transthoracic echocardiography, was significantly higher in CYP2J2 Tr than WT hearts after chronic Dox treatment (WT 37 +/- 2%, CYP2J2 Tr 47 +/- 1%). WT mice also had larger increases in beta-myosin heavy chain and cardiac ankryin repeat protein compared with CYP2J2 Tr mice. CYP2J2 Tr hearts had a significantly higher rate of Dox metabolism than WT hearts (2.2 +/- 0.25 vs. 1.6 +/- 0.50 ng.min(-1).100 microg protein(-1)). In vitro data from H9c2 cells demonstrated that EETs attenuated Dox-induced mitochondrial damage. Together, these data suggest that cardiac-specific overexpression of CYP2J2 limited Dox-induced toxicity.


The Journal of Physiology | 2006

Cardiac and vascular KATP channels in rats are activated by endogenous epoxyeicosatrienoic acids through different mechanisms

Tong Lu; Dan Ye; Xiao Li Wang; John M. Seubert; Joan P. Graves; J. Alyce Bradbury; Darryl C. Zeldin; Hon Chi Lee

We have reported that epoxyeicosatrienoic acids (EETs), the cytochrome P450 (CYP) epoxygenase metabolites of arachidonic acid (AA), are potent sarcolemmal ATP‐sensitive K+ (KATP) channel activators. However, activation of cardiac and vascular KATP channels by endogenously produced EETs under physiological intracellular conditions has not been demonstrated and direct comparison of the mechanisms whereby EETs activate the KATP channels in cardiac myocytes versus vascular smooth muscle cells has not been made. In this study, we examined the effects of AA on KATP channels in freshly isolated cardiac myocytes from rats, wild‐type (WT) and transgenic mice overexpressing CYP2J2 cDNA, and mesenteric arterial smooth muscle cells from rats. We also compared the activation of cardiac and vascular KATP channels by extracellularly and intracellularly applied 11,12‐EET. We found that 1 μm AA enhanced KATP channel activities in both cardiac and vascular smooth muscle cells, and the AA effects were inhibited by preincubation with CYP epoxygenase inhibitors. Baseline cardiac KATP current densities in CYP2J2 transgenic mice were 190% higher than those of WT mice, and both were reduced to similar levels by CYP epoxygenase inhibition. Western blot analysis showed that expression of Kir6.2 and SUR2A was similar between WT and CYP2J2 transgenic hearts. 11,12‐EET (5 μm) applied intracellularly enhanced the KATP currents by 850% in cardiac myocytes, but had no effect in vascular smooth muscle cells. In contrast, 11,12‐EET (5 μm) applied extracellularly increased KATP currents by 520% in mesenteric arterial smooth muscle cells, but by only 209% in cardiac myocytes. Preincubation with 100 μmm‐iodobenzylguanidine or 5 μm myristoylated PKI amide did not alter the activation of cardiac KATP channels by 5 μm 11,12‐EET, but significantly inhibited activation of vascular KATP channels. Moreover, EET only enhanced the inward component of cardiac KATP currents, but activated both the inward and outward components of vascular KATP currents. Our results indicate that endogenously derived CYP metabolites of AA potently activate cardiac and vascular KATP channels. EETs regulate cardiac electrophysiology and vascular tone by KATP channel activation, albeit through different mechanisms: the cardiac KATP channels are directly activated by EETs, whereas activation of the vascular KATP channels by EETs is protein kinase A dependent.


The FASEB Journal | 2008

Increased blood pressure in mice lacking cytochrome P450 2J5

Krairerk Athirakul; J. Alyce Bradbury; Joan P. Graves; Laura M. DeGraff; Jixiang Ma; Yun Zhao; John F. Couse; Raymond Quigley; David R. Harder; Xueying Zhao; John D. Imig; Theresa L. Pedersen; John W. Newman; Bruce D. Hammock; Alan J. Conley; Kenneth S. Korach; Thomas M. Coffman; Darryl C. Zeldin

The cytochrome P450 (CYP) enzymes participate in a wide range of biochemical functions, including metabolism of arachidonic acid and steroid hormones. Mouse CYP2J5 is abundant in the kidney where its products, the cis‐epoxyeicosatrienoic acids (EETs), modulate sodium transport and vascular tone. To define the physiological role of CYP2J5 in the kidney, knockout mice were generated using a conventional gene targeting approach. Cyp2j5 (‐/‐) mice develop normally and exhibit no overt renal pathology. While renal EET biosynthesis was apparently unaffected by the absence of CYP2J5, deficiency of this CYP in female mice was associated with increased blood pressure, enhanced proximal tubular transport rates, and exaggerated afferent arteriolar responses to angiotensin II and endothelin I. Interestingly, plasma 17β‐estradiol levels were reduced in female Cyp2j5 (‐/‐) mice and estrogen replacement restored blood pressure and vascular responsiveness to normal levels. There was no evidence of enhanced estrogen metabolism, or altered expression or activities of steroidogenic enzymes in female Cyp2j5 (‐/‐) mice, but their plasma levels of luteinizing hormone and follicle stimulating hormone were inappropriately low. Together, our findings illustrate a sex‐specific role for CYP2J5 in regulation of blood pressure, proximal tubular transport, and afferent arteriolar responsiveness via an estrogen‐dependent mechanism.— Athirakul, K., Bradbury, J. A., Graves, J. P., DeGraff, L. M., Ma, J., Zhao, Y., Couse, J. F., Quigley, R., Harder, D. R., Zhao, X., Imig, J. D., Pedersen, T. L., Newman, J. W., Hammock, B. D., Conley, A. J., Korach, K. S., Coffman, T. M., Zeldin, D. C. Increased blood pressure in mice lacking cytochrome P450 2J5. FASEB J. 22, 4096–4108 (2008)


PLOS ONE | 2010

Pharmacologic inhibition of COX-1 and COX-2 in influenza A viral infection in mice.

Michelle A. Carey; J. Alyce Bradbury; Yvette Rebolloso; Joan P. Graves; Darryl C. Zeldin; Dori R. Germolec

Background We previously demonstrated that cyclooxygenase (COX)-1 deficiency results in greater morbidity and inflammation, whereas COX-2 deficiency leads to reduced morbidity, inflammation and mortality in influenza infected mice. Methodology/Principal Findings We investigated the effects of COX-1 and COX-2 inhibitors in influenza A viral infection. Mice were given a COX-1 inhibitor (SC-560), a COX-2 inhibitor (celecoxib) or no inhibitor beginning 2 weeks prior to influenza A viral infection (200 PFU) and throughout the course of the experiment. Body weight and temperature were measured daily as indicators of morbidity. Animals were sacrificed on days 1 and 4 post-infection and bronchoalveolar lavage (BAL) fluid was collected or daily mortality was recorded up to 2 weeks post-infection. Treatment with SC-560 significantly increased mortality and was associated with profound hypothermia and greater weight loss compared to celecoxib or control groups. On day 4 of infection, BAL fluid cells were modestly elevated in celecoxib treated mice compared to SC-560 or control groups. Viral titres were similar between treatment groups. Levels of TNF-α and G-CSF were significantly attenuated in the SC-560 and celecoxib groups versus control and IL-6 levels were significantly lower in BAL fluid of celecoxib treated mice versus control and versus the SC-560 group. The chemokine KC was significantly lower in SC-560 group versus control. Conclusions/Significance Treatment with a COX-1 inhibitor during influenza A viral infection is detrimental to the host whereas inhibition of COX-2 does not significantly modulate disease severity. COX-1 plays a critical role in controlling the thermoregulatory response to influenza A viral infection in mice.

Collaboration


Dive into the Joan P. Graves's collaboration.

Top Co-Authors

Avatar

Darryl C. Zeldin

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

J. Alyce Bradbury

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Laura M. DeGraff

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Matthew L. Edin

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Fred B. Lih

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Artiom Gruzdev

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

John R. Falck

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar

Julie F. Foley

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Michael A. Resnick

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Vladimir Larionov

National Institutes of Health

View shared research outputs
Researchain Logo
Decentralizing Knowledge