Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Matthew L. Edin is active.

Publication


Featured researches published by Matthew L. Edin.


Journal of Clinical Investigation | 2012

Epoxyeicosanoids stimulate multiorgan metastasis and tumor dormancy escape in mice

Dipak Panigrahy; Matthew L. Edin; Craig R. Lee; Sui Huang; Diane R. Bielenberg; Catherine Butterfield; Carmen Barnes; Akiko Mammoto; Ayala Luria; Ofra Benny; Deviney Chaponis; Andrew C. Dudley; Emily R. Greene; Jo-Anne Vergilio; Giorgio Pietramaggiori; Sandra S. Scherer-Pietramaggiori; Sarah Short; Meetu Seth; Fred B. Lih; Kenneth B. Tomer; Jun Yang; Reto A. Schwendener; Bruce D. Hammock; John R. Falck; Vijaya L. Manthati; Donald E. Ingber; Arja Kaipainen; Patricia A. D'Amore; Mark W. Kieran; Darryl C. Zeldin

Epoxyeicosatrienoic acids (EETs) are small molecules produced by cytochrome P450 epoxygenases. They are lipid mediators that act as autocrine or paracrine factors to regulate inflammation and vascular tone. As a result, drugs that raise EET levels are in clinical trials for the treatment of hypertension and many other diseases. However, despite their pleiotropic effects on cells, little is known about the role of these epoxyeicosanoids in cancer. Here, using genetic and pharmacological manipulation of endogenous EET levels, we demonstrate that EETs are critical for primary tumor growth and metastasis in a variety of mouse models of cancer. Remarkably, we found that EETs stimulated extensive multiorgan metastasis and escape from tumor dormancy in several tumor models. This systemic metastasis was not caused by excessive primary tumor growth but depended on endothelium-derived EETs at the site of metastasis. Administration of synthetic EETs recapitulated these results, while EET antagonists suppressed tumor growth and metastasis, demonstrating in vivo that pharmacological modulation of EETs can affect cancer growth. Furthermore, inhibitors of soluble epoxide hydrolase (sEH), the enzyme that metabolizes EETs, elevated endogenous EET levels and promoted primary tumor growth and metastasis. Thus, our data indicate a central role for EETs in tumorigenesis, offering a mechanistic link between lipid signaling and cancer and emphasizing the critical importance of considering possible effects of EET-modulating drugs on cancer.


Cancer Research | 2007

Cytochrome P450 Epoxygenase Promotes Human Cancer Metastasis

Jiangang Jiang; Yaogui Ning; Chen Chen; Ding Ma; Zhenjun Liu; Shilin Yang; Jianfeng Zhou; Xiao Xiao; Xin A. Zhang; Matthew L. Edin; Jeffrey W. Card; Jianing Wang; Darryl C. Zeldin; Dao Wen Wang

Cytochrome P450 (CYP) epoxygenases convert arachidonic acid to four regioisomeric epoxyeicosatrienoic acids (EET), which exert diverse biological activities in a variety of systems. We previously reported that the CYP2J2 epoxygenase is overexpressed in human cancer tissues and cancer cell lines and that EETs enhance tumor growth, increase carcinoma cell proliferation, and prevent apoptosis of cancer cells. Herein, we report that CYP epoxygenase overexpression or EET treatment promotes tumor metastasis independent of effects on tumor growth. In four different human cancer cell lines in vitro, overexpression of CYP2J2 or CYP102 F87V with an associated increase in EET production or addition of synthetic EETs significantly induced Transwell migration (4.5- to 5.5-fold), invasion of cells (3- to 3.5-fold), cell adhesion to fibronectin, and colony formation in soft agar. In contrast, the epoxygenase inhibitor 17-ODYA or infection with the antisense recombinant adeno-associated viral vector (rAAV)-CYP2J2 vector inhibited cell migration, invasion, and adhesion with an associated reduction in EET production. CYP overexpression also enhanced metastatic potential in vivo in that rAAV-CYP2J2-infected MDA-MB-231 human breast carcinoma cells showed 60% more lung metastases in athymic BALB/c mice and enhanced angiogenesis in and around primary tumors compared with control cells. Lung metastasis was abolished by infection with the antisense rAAV-CYP2J2 vector. CYP epoxygenase overexpression or EET treatment up-regulated the prometastatic matrix metalloproteinases and CD44 and down-regulated the antimetastatic genes CD82 and nm-23. Together, these data suggest that CYP epoxygenase inhibition may represent a novel approach to prevent metastasis of human cancers.


The FASEB Journal | 2010

Endothelial expression of human cytochrome P450 epoxygenases lowers blood pressure and attenuates hypertension-induced renal injury in mice

Craig R. Lee; John D. Imig; Matthew L. Edin; Julie F. Foley; Laura M. DeGraff; J. Alyce Bradbury; Joan P. Graves; Fred B. Lih; James A. Clark; Page Myers; A. Ligon Perrow; Adrienne Lepp; M. Alison Kannon; Oline K. Rønnekleiv; Nabil J. Alkayed; John R. Falck; Kenneth B. Tomer; Darryl C. Zeldin

Renal cytochrome P450 (CYP)‐derived epoxyeicosatrienoic acids (EETs) regulate sodium transport and blood pressure. Although endothelial CYP‐derived EETs are potent vasodilators, their contribution to the regulation of blood pressure remains unclear. Consequently, we developed transgenic mice with endothelial expression of the human CYP2J2 and CYP2C8 epoxygenases to increase endothelial EET biosynthesis. Compared to wild‐type littermate controls, an attenuated afferent arteriole constrictor response to endothelin‐1 and enhanced dilator response to acetylcholine was observed in CYP2J2 and CYP2C8 transgenic mice. CYP2J2 and CYP2C8 transgenic mice demonstrated modestly, but not significantly, lower mean arterial pressure under basal conditions compared to wild‐type controls. However, mean arterial pressure was significantly lower in both CYP2J2 and CYP2C8 transgenic mice during coadministration of N‐nitro‐l‐arginine methyl ester and indomethacin. In a separate experiment, a high‐salt diet and subcutaneous angiotensin II was administered over 4 wk. The angiotensin/high‐salt‐induced increase in systolic blood pressure, proteinuria, and glomerular injury was significantly attenuated in CYP2J2 and CYP2C8 transgenic mice compared to wild‐type controls. Collectively, these data demonstrate that increased endothelial CYP epoxygenase expression attenuates afferent arteriolar constrictor reactivity and hypertension‐induced increases in blood pressure and renal injury in mice. We conclude that endothelial CYP epoxygenase function contributes to the regulation of blood pressure.—Lee, C. R., Imig, J. D., Edin, M. E., Foley, J., DeGraff, L. M., Bradbury, J. A., Graves, J. P., Lih, F. B., Clark, J., Myers, P., Perrow, A. L., Lepp, A. N., Kannon, M. A., Ronnekleiv, O. K., Alkayed, N.J., Falck, J. R., Tomer, K B., Zeldin, D. C. Endothelial expression of human cytochrome P450 epoxygenases lowers blood pressure and attenuates hypertension‐induced renal injury in mice. FASEB J. 24, 3770–3781 (2010). www.fasebj.org


The FASEB Journal | 2011

Endothelial CYP epoxygenase overexpression and soluble epoxide hydrolase disruption attenuate acute vascular inflammatory responses in mice

Yangmei Deng; Matthew L. Edin; Katherine N. Theken; Robert N. Schuck; Gordon P. Flake; M. Alison Kannon; Laura M. DeGraff; Fred B. Lih; Julie F. Foley; J. Alyce Bradbury; Joan P. Graves; Kenneth B. Tomer; John R. Falck; Darryl C. Zeldin; Craig R. Lee

Cytochrome P‐450 (CYP)‐derived epoxyei‐cosatrienoic acids (EETs) possess potent anti‐inflammatory effects in vitro. However, the effect of increased CYP‐mediated EET biosynthesis and decreased soluble epoxide hydrolase (sEH, Ephx2)‐mediated EET hydrolysis on vascular inflammation in vivo has not been rigorously investigated. Consequently, we characterized acute vascular inflammatory responses to endotoxin in transgenic mice with endothelial expression of the human CYP2J2 and CYP2C8 epoxygenases and mice with targeted disruption of Ephx2. Compared to wild‐type controls, CYP2J2 transgenic, CYP2C8 transgenic, and Ephx2−/− mice each exhibited a significant attenuation of endotoxin‐induced activation of nuclear factor (NF)‐κB signaling, cellular adhesion molecule, chemokine and cytokine expression, and neutrophil infiltration in lung in vivo. Furthermore, attenuation of endotoxin‐induced NF‐κB activation and cellular adhesion molecule and chemokine expression was observed in primary pulmonary endothelial cells isolated from CYP2J2 and CYP2C8 transgenic mice. This attenuationwas inhibited bya putative EET receptor antagonist and CYP epoxygenase inhibitor, directly implicating CYP epoxygenase‐derived EETs with the observed anti‐inflammatory phenotype. Collectively, these data demonstrate that potentiation of the CYP epoxygenase pathway by either increased endothelial EET biosynthesis or globally decreased EET hydrolysis attenuates NF‐κB‐dependent vascular inflammatory responses in vivo and may serve as a viable anti‐inflammatory therapeutic strategy.—Deng, Y., Edin, M. L., Theken, K N., Schuck, R N., Flake, G. P., Kannon, M. A., DeGraff, L. M., Lih, F. B., Foley, J., Bradbury, J. A., Graves, J. P., Tomer, K. B., Falck, J. R., Zeldin, D. C., Lee, C. R. Endothelial CYP epoxygenase overexpression and soluble epoxide hydrolase disruption attenuate acute vascular inflammatory responses in mice. FASEB J. 25, 703–713 (2011). www.fasebj.org


The FASEB Journal | 2011

Endothelial expression of human cytochrome P450 epoxygenase CYP2C8 increases susceptibility to ischemia-reperfusion injury in isolated mouse heart

Matthew L. Edin; ZhongJing Wang; J. Alyce Bradbury; Joan P. Graves; Fred B. Lih; Laura M. DeGraff; Julie F. Foley; Robert Torphy; Oline K. Rønnekleiv; Kenneth B. Tomer; Craig R. Lee; Darryl C. Zeldin

Cytochrome P450 (CYP) epoxygenases CYP2C8 and CYP2J2 generate epoxyeicosatrienoic acids (EETs) from arachidonic acid. Mice with expression of CYP2J2 in cardiomyocytes (αMHC‐CYP2J2 Tr) or treated with synthetic EETs have increased functional recovery after ischemia/reperfusion (I/R); however, no studies have examined the role of cardiomyocyte‐ vs. endothelial‐derived EETs or compared the effects of different CYP epoxygenase isoforms in the ischemic heart. We generated transgenic mice with increased endothelial EET biosynthesis (Tie2‐CYP2C8 Tr and Tie2‐CYP2J2 Tr) or EET hydrolysis (Tie2‐sEH Tr). Compared to wild‐type (WT), αMHC‐CYP2J2 Tr hearts showed increased recovery of left ventricular developed pressure (LVDP) and decreased infarct size after I/R. In contrast, LVDP recovery and infarct size were unchanged in Tie2‐CYP2J2 Tr and Tie2‐sEH Tr hearts. Surprisingly, compared to WT, Tie2‐CYP2C8 Tr hearts had significantly reduced LVDP recovery (from 21 to 14%) and increased infarct size after I/R (from 51 to 61%). Tie2‐CYP2C8 Tr hearts also exhibited increased reactive oxygen species (ROS) generation, dihydroxyoctadecenoic acid (DiHOME) formation, and coronary resistance after I/R. ROS scavengers and CYP2C8 inhibition reversed the detrimental effects of CYP2C8 expression in Tie2‐CYP2C8 Tr hearts. Treatment of WT hearts with 250 nM 9,10‐DiHOME decreased LVDP recovery compared to vehicle (16 vs. 31%, respectively) and increased coronary resistance after I/R. These data demonstrate that increased ROS generation and enhanced DiHOME synthesis by endothelial CYP2C8 impair functional recovery and mask the beneficial effects of increased EET production following I/R.—Edin, M. L., Wang, Z. J., Bradbury, J. A., Graves, J. P., Lih, F. B., DeGraff, L. M., Foley, J. F., Torphy, R., Ronnekleiv, O. K., Tomer, K. B., Lee, C. R., Zeldin, D. C. Endothelial expression of human cytochrome P450 epoxygenase CYP2C8 increases susceptibility to ischemia‐reperfusion injury in isolated mouse heart. FASEB J. 25, 3436–3447 (2011). www.fasebj.org


Proceedings of the National Academy of Sciences of the United States of America | 2013

Epoxyeicosanoids promote organ and tissue regeneration

Dipak Panigrahy; Brian T. Kalish; Sui Huang; Diane R. Bielenberg; Hau D. Le; Jun Yang; Matthew L. Edin; Craig R. Lee; Ofra Benny; Dayna K. Mudge; Catherine Butterfield; Akiko Mammoto; Bora Inceoglu; Roger L. Jenkins; Mary Ann Simpson; Tomoshige Akino; Fred B. Lih; Kenneth B. Tomer; Donald E. Ingber; Bruce D. Hammock; John R. Falck; Vijaya L. Manthati; Arja Kaipainen; Patricia A. D'Amore; Mark Puder; Darryl C. Zeldin; Mark W. Kieran

Epoxyeicosatrienoic acids (EETs), lipid mediators produced by cytochrome P450 epoxygenases, regulate inflammation, angiogenesis, and vascular tone. Despite pleiotropic effects on cells, the role of these epoxyeicosanoids in normal organ and tissue regeneration remains unknown. EETs are produced predominantly in the endothelium. Normal organ and tissue regeneration require an active paracrine role of the microvascular endothelium, which in turn depends on angiogenic growth factors. Thus, we hypothesize that endothelial cells stimulate organ and tissue regeneration via production of bioactive EETs. To determine whether endothelial-derived EETs affect physiologic tissue growth in vivo, we used genetic and pharmacological tools to manipulate endogenous EET levels. We show that endothelial-derived EETs play a critical role in accelerating tissue growth in vivo, including liver regeneration, kidney compensatory growth, lung compensatory growth, wound healing, corneal neovascularization, and retinal vascularization. Administration of synthetic EETs recapitulated these results, whereas lowering EET levels, either genetically or pharmacologically, delayed tissue regeneration, demonstrating that pharmacological modulation of EETs can affect normal organ and tissue growth. We also show that soluble epoxide hydrolase inhibitors, which elevate endogenous EET levels, promote liver and lung regeneration. Thus, our observations indicate a central role for EETs in organ and tissue regeneration and their contribution to tissue homeostasis.


Diabetes | 2010

Increased CYP2J3 Expression Reduces Insulin Resistance in Fructose-Treated Rats and db/db Mice

Xizhen Xu; Chun Xia Zhao; Luyun Wang; Ling Tu; Xiaosai Fang; Changlong Zheng; Matthew L. Edin; Darryl C. Zeldin; Dao Wen Wang

OBJECTIVE Accumulating evidence suggests that cytochrome P450 (CYP) epoxygenases metabolize arachidonic acid into epoxyeicosatrienoic acids (EETs), which play crucial and diverse roles in cardiovascular homeostasis. The anti-inflammatory, antihypertensive, and pro-proliferative effects of EETs suggest a possible beneficial role for EETs on insulin resistance and diabetes. RESEARCH DESIGN AND METHODS This study investigated the effects of CYP2J3 epoxygenase gene therapy on insulin resistance and blood pressure in diabetic db/db mice and in a model of fructose-induced hypertension and insulin resistance in rats. RESULTS CYP2J3 gene delivery in vivo increased EET generation, reduced blood pressure, and reversed insulin resistance as determined by plasma glucose levels, homeostasis model assessment insulin resistance index, and glucose tolerance test. Furthermore, CYP2J3 treatment prevented fructose-induced decreases in insulin receptor signaling and phosphorylation of AMP-activated protein kinases (AMPKs) in liver, muscle, heart, kidney, and aorta. Thus, overexpression of CYP2J3 protected against diabetes and insulin resistance in peripheral tissues through activation of insulin receptor and AMPK pathways. CONCLUSIONS These results highlight the beneficial roles of the CYP epoxygenase-EET system in diabetes and insulin resistance.


Journal of Pharmacology and Experimental Therapeutics | 2009

Selective Inhibitors of CYP2J2 Related to Terfenadine Exhibit Strong Activity against Human Cancers in Vitro and in Vivo

Chen Chen; Guiling Li; Wanmin Liao; Jun Wu; Liu Liu; Ding Ma; Jianfeng Zhou; Reem H. Elbekai; Matthew L. Edin; Darryl C. Zeldin; Dao Wen Wang

The cytochrome P450 epoxygenase, CYP2J2, converts arachidonic acid to four regioisomeric epoxyeicosatrienoic acids (EETs). We found recently that this enzyme is dramatically up-regulated in a variety of established human carcinoma cell lines and in human cancerous tissue and promotes the neoplastic phenotype. In the present study, we tested the hypothesis that specific inhibitors of CYP2J2 related to the drug terfenadine are effective antitumor agents. Four of these inhibitors (compounds 4, 5, 11, and 26) were tested for effectiveness in vitro and in vivo. In Tca-8113 cells, the CYP2J2 inhibitors decreased EET production by approximately 60%, whereas they had no effect on CYP2J2 mRNA or protein expression. Compound 26 inhibited the proliferation of human tumor cells, reduced their ability to adhere, invade, and migrate, and attenuated activation of epithelial growth factor receptor signal and kinases and phosphatidylinositol 3 kinase/Akt pathways. Inhibition of CYP2J2 also significantly potentiated human tumor cell apoptosis and caused a corresponding increase in caspase-3 activity and change in expression of apoptosis-related proteins Bax and Bcl-2. In murine xenograft models using MDA-MB-435 cells, treatment with compound 26 significantly repressed tumor growth, decreased lung metastasis, and was associated with increased expression of the anticancer genes CD82 and nm23, without causing toxicity. These data suggest that CYP2J2 inhibitors hold significant promise for use in treatment of neoplastic diseases.


Atherosclerosis | 2012

Evaluation of cytochrome P450-derived eicosanoids in humans with stable atherosclerotic cardiovascular disease

Katherine N. Theken; Robert N. Schuck; Matthew L. Edin; Bryant Tran; Kyle Ellis; Almasa Bass; Fred B. Lih; Kenneth B. Tomer; Samuel M. Poloyac; Michael C. Wu; Alan L. Hinderliter; Darryl C. Zeldin; George A. Stouffer; Craig R. Lee

OBJECTIVE Preclinical and genetic epidemiologic studies suggest that modulating cytochrome P450 (CYP)-mediated arachidonic acid metabolism may have therapeutic utility in the management of coronary artery disease (CAD). However, predictors of inter-individual variation in CYP-derived eicosanoid metabolites in CAD patients have not been evaluated to date. Therefore, the primary objective was to identify clinical factors that influence CYP epoxygenase, soluble epoxide hydrolase (sEH), and CYP ω-hydroxylase metabolism in patients with established CAD. METHODS Plasma levels of epoxyeicosatrienoic acids (EETs), dihydroxyeicosatrienoic acids (DHETs), and 20-hydroxyeicosatetraenoic acid (20-HETE) were quantified by HPLC-MS/MS in a population of patients with stable, angiographically confirmed CAD (N=82) and healthy volunteers from the local community (N=36). Predictors of CYP epoxygenase, sEH, and CYP ω-hydroxylase metabolic function were evaluated by regression. RESULTS Obesity was significantly associated with low plasma EET levels and 14,15-EET:14,15-DHET ratios. Age, diabetes, and cigarette smoking also were significantly associated with CYP epoxygenase and sEH metabolic activity, while only renin-angiotensin system inhibitor use was associated with CYP ω-hydroxylase metabolic activity. Compared to healthy volunteers, both obese and non-obese CAD patients had significantly higher plasma EETs (P<0.01) and epoxide:diol ratios (P<0.01), whereas no difference in 20-HETE levels was observed (P=NS). CONCLUSIONS Collectively, these findings suggest that CYP-mediated eicosanoid metabolism is dysregulated in certain subsets of CAD patients, and demonstrate that biomarkers of CYP epoxygenase and sEH, but not CYP ω-hydroxylase, metabolism are altered in stable CAD patients relative to healthy individuals. Future studies are necessary to determine the therapeutic utility of modulating these pathways in patients with CAD.


Journal of Pharmacology and Experimental Therapeutics | 2011

Epoxyeicosatrienoic Acids Attenuate Reactive Oxygen Species Level, Mitochondrial Dysfunction, Caspase Activation, and Apoptosis in Carcinoma Cells Treated with Arsenic Trioxide

Liu Liu; Chen Chen; Wei Gong; Yuanjing Li; Matthew L. Edin; Darryl C. Zeldin; Dao Wen Wang

Epoxyeicosatrienoic acids (EETs) and the cytochrome P450 epoxygenase CYP2J2 promote tumorogenesis in vivo and in vitro via direct stimulation of tumor cell growth and inhibition of tumor cell apoptosis. Herein, we describe a novel mechanism of inhibition of tumor cell apoptosis by EETs. In Tca-8113 cancer cells, the antileukemia drug arsenic trioxide (ATO) led to the generation of reactive oxygen species (ROS), impaired mitochondrial function, and induced apoptosis. 11,12-EET pretreatment increased expression of the antioxidant enzymes superoxide dismutase and catalase and inhibited ATO-induced apoptosis. 11,12-EET also prevented the ATO-induced activation of p38 mitogen-activated protein kinase, c-Jun NH2-terminal kinase, caspase-3, and caspase-9. Therefore, 11,12-EET-pretreatment attenuated the ROS generation, loss of mitochondrial function, and caspase activation observed after ATO treatment. Moreover, the CYP2J2-specific inhibitor compound 26 enhanced arsenic cytotoxicity to a clinically relevant concentration of ATO (1–2 μM). Both the thiol-containing antioxidant, N-acetyl-cysteine, and 11,12-EET reversed the synergistic effect of the two agents. Taken together, these data indicate that 11,12-EET inhibits apoptosis induced by ATO through a mechanism that involves induction of antioxidant proteins and attenuation of ROS-mediated mitochondrial dysfunction.

Collaboration


Dive into the Matthew L. Edin's collaboration.

Top Co-Authors

Avatar

Darryl C. Zeldin

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Fred B. Lih

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Laura M. DeGraff

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Kenneth B. Tomer

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Craig R. Lee

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

J. Alyce Bradbury

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Dao Wen Wang

Huazhong University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Joan P. Graves

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Artiom Gruzdev

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

John R. Falck

University of Texas Southwestern Medical Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge