Joan Ribot
Laboratory of Molecular Biology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Joan Ribot.
Cellular and Molecular Life Sciences | 2003
M. L. Bonet; Joan Ribot; F. Felipe; Andreu Palou
AbstractBeyond their classical nutritional roles, nutrients modify gene expression and function in target cells and, by so doing, affect many fundamental biological processes. An emerging example, which is the focus of this review, is the involvement of vitamin A in the regulation of the level and functioning of body fat reserves. Retinoic acid, the carboxylic acid form of vitamin A, is a transcriptional activator of the genes encoding uncoupling proteins, and results in animals indicate that whole body thermogenic capacity is related to the vitamin A status. Retinoic acid also influences adipocyte differentiation and survival, with high doses inhibiting and low doses promoting adipogenesis of preadipose cells in culture. Moreover, vitamin A status can influence the development and function of adipose tissues in whole animals, with a low vitamin A status favouring increased fat deposition.
PLOS ONE | 2011
Jaume Amengual; Erwan Gouranton; Yvonne G. J. van Helden; Susanne Hessel; Joan Ribot; Evelien Kramer; Beata Kiec-Wilk; Ursula Razny; Georg Lietz; Adrian Wyss; A. Dembinska-Kiec; Andreu Palou; Jaap Keijer; Jean François Landrier; M. Luisa Bonet; Johannes von Lintig
Evidence from cell culture studies indicates that β-carotene-(BC)-derived apocarotenoid signaling molecules can modulate the activities of nuclear receptors that regulate many aspects of adipocyte physiology. Two BC metabolizing enzymes, the BC-15,15′-oxygenase (Bcmo1) and the BC-9′,10′-oxygenase (Bcdo2) are expressed in adipocytes. Bcmo1 catalyzes the conversion of BC into retinaldehyde and Bcdo2 into β-10′-apocarotenal and β-ionone. Here we analyzed the impact of BC on body adiposity of mice. To genetically dissect the roles of Bcmo1 and Bcdo2 in this process, we used wild-type and Bcmo1 -/- mice for this study. In wild-type mice, BC was converted into retinoids. In contrast, Bcmo1-/- mice showed increased expression of Bcdo2 in adipocytes and β-10′-apocarotenol accumulated as the major BC derivative. In wild-type mice, BC significantly reduced body adiposity (by 28%), leptinemia and adipocyte size. Genome wide microarray analysis of inguinal white adipose tissue revealed a generalized decrease of mRNA expression of peroxisome proliferator-activated receptor γ (PPARγ) target genes. Consistently, the expression of this key transcription factor for lipogenesis was significantly reduced both on the mRNA and protein levels. Despite β-10′-apocarotenoid production, this effect of BC was absent in Bcmo1-/- mice, demonstrating that it was dependent on the Bcmo1-mediated production of retinoids. Our study evidences an important role of BC for the control of body adiposity in mice and identifies Bcmo1 as critical molecular player for the regulation of PPARγ activity in adipocytes
International Journal of Obesity | 2003
F Felipe; M L Bonet; Joan Ribot; Andreu Palou
OBJECTIVE: To analyse the impact of vitamin A supplementation of both a normal fat (NF) diet and a high fat (HF) diet and of acute retinoic acid (RA)-treatment on the expression of uncoupling protein 3 (UCP3) in mice.DESIGN: C57BL/6J mice were fed for 18 weeks a NF or a HF diet (10 and 45 energy% as fat, respectively), both with the normal vitamin A content or an excess vitamin A (8 mg and 320 mg retinyl palmitate/kg diet, respectively). Body weight and energy intake were recorded periodically. UCP3 mRNA and UCP3 protein levels in skeletal muscle (soleus/gastrocnemius) were analysed, as well as UCP1, UCP2 and UCP3 mRNA levels in interscapular brown adipose tissue (BAT), and UCP2 mRNA, UCP2 protein and leptin mRNA levels in white adipose tissue (WAT) depots. The effect of acute RA-treatment (100 mg/kg/day, 4 days) on UCP3 mRNA levels in skeletal muscle and BAT of NMRI mice was also assessed.RESULTS: Vitamin A supplementation of a NF diet led to increased levels of UCP3 mRNA and UCP3 protein in muscle, UCP1 mRNA in BAT, and UCP2 mRNA in inguinal WAT, but had no impact on body weight or adiposity of B6 mice. HF diet promoted obesity and increased levels of UCP3 mRNA and UCP3 protein in skeletal muscle, and of the mRNAs for all three UCPs in BAT. Supplementing the HF diet with vitamin A had little effect on the final obesity reached and did not lead to further increases of muscle UCP3 mRNA nor BAT UCP1 mRNA over the levels achieved with the non-supplemented HF diet. Adipose leptin mRNA levels were down regulated after vitamin A supplementation, independently of the fat content of the diet. Up-regulation of muscle, but not BAT, UCP3 mRNA levels was also found after acute RA-treatment in NMRI mice.CONCLUSION: The results provide evidence of a stimulatory effect of retinoids on muscle UCP3 expression in vivo, and a differential retinoid-regulation of the UCP3 gene in muscle and BAT.
Obesity | 2008
Joan Ribot; Ana M. Rodríguez; Enrique Rodríguez; Andreu Palou
Objective: Studying the sex‐dependent response of adiponectin and resistin adipose tissue expression and circulating levels in the onset of dietary obesity.
European Journal of Cell Biology | 1998
Pere Puigserver; Joan Ribot; Francisca Serra; Magdalena Gianotti; M. Luisa Bonet; Bernardo Nadal-Ginard; Andreu Palout
We investigated the expression of the retinoblastoma protein (pRB) in adipocytes and its possible interaction with the adipogenic transcription factor CCAAT/enhancer-binding protein alpha (C/EBPalpha) in controlling the acquisition of the terminally differentiated adipocyte phenotype. The pRB was expressed (as measured by immunoblotting and/or immunofluorescence) in mice brown and white adipose tissue and in cultured adipocytes that showed lipid accumulation and expressed specific differentiation markers such as aP2 (measured using a specific cDNA probe) and in the case of brown adipocytes UCP-1 (measured using specific antibodies), but was undetectable in proliferative undifferentiated preadipocytes. Transient transfection experiments revealed a functional interaction between pRB and C/EBPalpha affecting transcription from the ucp-1 gene promoter. Thus, in immortalized brown adipocytes, co-transfection of both a C/EBPalpha and a pRB expression vectors maximally enhanced the expression of reporter chloramphenicol acetyltransferase driven by the ucp-1 promoter. Interestingly, C/EBPalpha inhibited reporter gene expression in CHO cells in an effect that was also potentiated in the presence of pRB. A positive effect of pRB on transcription from the ucp-1 promoter could be detected in C/EBPalpha-/-fibroblasts only after forced to overexpress C/EBPalpha, suggesting that the effect of pRB is dependent on its interaction with C/EBPalpha. We also found evidence that pRB and C/EBPalpha can directly bind to each other in vitro. Our results show that the expression of pRB is restricted to differentiated adipocytes, and provide evidence of a physical and functional interaction between pRB and C/EBPalpha that affects the transcriptional activity of the later on a brown adipocyte-specific gene.
Cellular Physiology and Biochemistry | 2010
Jaume Amengual; Joan Ribot; M. Luisa Bonet; Andreu Palou
Vitamin A, mainly as retinoic acid (RA), is known to affect the development and function of adipose tissues. Treatment with RA reduces body weight and adiposity independent of changes in food intake in mice. Lipid metabolism in liver can have a major impact on whole body adiposity. The aim of this work was to investigate the effects of an in vivo treatment with RA on hepatic lipid metabolism in mice. Adult, standard diet-fed mice were treated with different doses of all-trans RA or vehicle (subcutaneous injection) for 4 days before sacrifice. Food intake and body weight changes during treatment were determined, as well as adiposity, liver composition, levels of circulating metabolites and lipoproteins and expression levels of key mRNA species in liver following sacrifice. RA treatment resulted in reduced body weight and adiposity, as expected. In the liver, RA treatment triggered an increase in the mRNA expression levels of peroxisome proliferator-activated receptor alpha, retinoid X receptor alpha, uncoupling protein 2, liver-type carnitine palmitoyltransferase 1, and carnitine/acylcarnitine carrier, and a reduction in the mRNA expression levels of sterol regulatory element binding protein 1c and fatty acid synthase. Consistent with the changes in gene expression, hepatic triacylglycerol content and circulating VLDL fraction were reduced and levels of circulating ketone bodies increased after RA treatment. These results point to a capacity of active vitamin A forms to shift liver lipid metabolism in vivo towards increased catabolism and reduced lipogenesis. These effects might contribute to the reduction of adiposity brought about by RA treatment.
Archives of Biochemistry and Biophysics | 2015
M. Luisa Bonet; Jose A. Canas; Joan Ribot; Andreu Palou
A novel perspective of the function of carotenoids and carotenoid-derived products - including, but not restricted to, the retinoids - is emerging in recent years which connects these compounds to the control of adipocyte biology and body fat accumulation, with implications for the management of obesity, diabetes and cardiovascular disease. Cell and animal studies indicate that carotenoids and carotenoids derivatives can reduce adiposity and impact key aspects of adipose tissue biology including adipocyte differentiation, hypertrophy, capacity for fatty acid oxidation and thermogenesis (including browning of white adipose tissue) and secretory function. Epidemiological studies in humans associate higher dietary intakes and serum levels of carotenoids with decreased adiposity. Specifically designed human intervention studies, though still sparse, indicate a beneficial effect of carotenoid supplementation in the accrual of abdominal adiposity. The objective of this review is to summarize recent findings in this area, place them in physiological contexts, and provide likely regulatory schemes whenever possible. The focus will be on the effects of carotenoids as nutritional regulators of adipose tissue biology and both animal and human studies, which support a role of carotenoids and retinoids in the prevention of abdominal adiposity.
Obesity | 2008
Jaume Amengual; Joan Ribot; M. Luisa Bonet; Andreu Palou
Objective: All‐trans retinoic acid (ATRA), a carboxylic form of vitamin A, favors in mice a mobilization of body fat reserves that correlates with an increment of oxidative and thermogenic capacity in adipose tissues. The objective of this study has been to investigate the effect of ATRA treatment on skeletal muscle capacity for fatty‐acid catabolism.
American Journal of Physiology-endocrinology and Metabolism | 2009
Josep M. Mercader; Joan Ribot; Incoronata Murano; Søren Feddersen; Saverio Cinti; Lise Madsen; Karsten Kristiansen; M. Luisa Bonet; Andreu Palou
Brown adipose tissue activity dissipates energy as heat, and there is evidence that lack of the retinoblastoma protein (pRb) may favor the development of the brown adipocyte phenotype in adipose cells. In this work we assessed the impact of germ line haploinsufficiency of the pRb gene (Rb) on the response to high-fat diet feeding in mice. Rb(+/-) mice had body weight and adiposity indistinguishable from that of wild-type (Rb(+/+)) littermates when maintained on a standard diet, yet they gained less body weight and body fat after long-term high-fat diet feeding coupled with reduced feed efficiency and increased rectal temperature. Rb haploinsufficiency ameliorated insulin resistance and hepatosteatosis after high-fat diet in male mice, in which these disturbances were more marked than in females. Compared with wild-type littermates, Rb(+/-) mice fed a high-fat diet displayed higher expression of peroxisome proliferator-activated receptor (PPAR)gamma as well as of genes involved in mitochondrial function, cAMP sensitivity, brown adipocyte determination, and tissue vascularization in white adipose tissue depots. Furthermore, Rb(+/-) mice exhibited signs of enhanced activation of brown adipose tissue and higher expression levels of PPARalpha in liver and of PPARdelta in skeletal muscle, suggestive of an increased capability for fatty acid oxidation in these tissues. These findings support a role for pRb in modulating whole body energy metabolism and the plasticity of the adipose tissues in vivo and constitute first evidence that partial deficiency in the Rb gene protects against the development of obesity and associated metabolic disturbances.
FEBS Letters | 1997
M. Luisa Bonet; Pere Puigserver; Francisca Serra; Joan Ribot; Francisca Vazquez; Catalina Picó; Andreu Palou
A novel potential regulatory pathway of brown adipose tissue (BAT) thermogenesis was recently recognized after identifying retinoic acid (RA) as a transcriptional activator of the uncoupling protein (UCP) gene. Here we provide evidence that the UCP responsiveness to RA in primary cultures of brown adipocytes involves RA receptor α (RARα), and show, in the same system and also in CHO cells, that RA down‐regulates the steady‐state levels of RARα and especially of retinoid X receptor α, suggesting autoregulation of the retinoid pathway and therefore supporting the idea of a physiological role for it in controlling the thermogenic capacity of BAT.