M. Luisa Bonet
Laboratory of Molecular Biology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by M. Luisa Bonet.
PLOS ONE | 2010
Lise Madsen; Lone Møller Pedersen; Haldis H. Lillefosse; Even Fjære; Ingeborg Brønstad; Qin Hao; Rasmus Koefoed Petersen; Philip Hallenborg; Tao Ma; Rita De Matteis; Pedro Araujo; Josep Mercader; M. Luisa Bonet; Jacob B. Hansen; Barbara Cannon; Jan Nedergaard; Jun Wang; Saverio Cinti; Peter J. Voshol; Stein Ove Døskeland; Karsten Kristiansen
Background The uncoupling protein 1 (UCP1) is a hallmark of brown adipocytes and pivotal for cold- and diet-induced thermogenesis. Methodology/Principal Findings Here we report that cyclooxygenase (COX) activity and prostaglandin E2 (PGE2) are crucially involved in induction of UCP1 expression in inguinal white adipocytes, but not in classic interscapular brown adipocytes. Cold-induced expression of UCP1 in inguinal white adipocytes was repressed in COX2 knockout (KO) mice and by administration of the COX inhibitor indomethacin in wild-type mice. Indomethacin repressed β-adrenergic induction of UCP1 expression in primary inguinal adipocytes. The use of PGE2 receptor antagonists implicated EP4 as a main PGE2 receptor, and injection of the stable PGE2 analog (EP3/4 agonist) 16,16 dm PGE2 induced UCP1 expression in inguinal white adipose tissue. Inhibition of COX activity attenuated diet-induced UCP1 expression and increased energy efficiency and adipose tissue mass in obesity-resistant mice kept at thermoneutrality. Conclusions/Significance Our findings provide evidence that induction of UCP1 expression in white adipose tissue, but not in classic interscapular brown adipose tissue is dependent on cyclooxygenase activity. Our results indicate that cyclooxygenase-dependent induction of UCP1 expression in white adipose tissues is important for diet-induced thermogenesis providing support for a surprising role of COX activity in the control of energy balance and obesity development.
The International Journal of Biochemistry & Cell Biology | 1998
Andreu Palou; Catalina Picó; M. Luisa Bonet; Paula Oliver
The uncoupling protein (UCP) or thermogenin is a 33 kDa inner-membrane mitochondrial protein exclusive to brown adipocytes in mammals that functions as a proton transporter, allowing the dissipation as heat of the proton gradient generated by the respiratory chain and thereby uncoupling oxidative phosphorylation. Thermogenesis (heat production) in brown adipose tissue, which is activated in response to cold exposure or chronic overeating, depends largely on UCP activity. Norepinephrine, released from sympathetic terminals and acting via beta-adrenoceptors and cAMP, is the main positive regulator of both UCP synthesis and activity. Brown fat thermogenesis plays a critical role in thermoregulation and in overall energy balance, at least in rodents. Manipulation of thermogenesis, whether through UCP or through analogous uncoupling proteins, could be an effective strategy against obesity.
Journal of Biological Chemistry | 2010
Glenn P. Lobo; Jaume Amengual; Hua Nan M. Li; Marcin Golczak; M. Luisa Bonet; Krzysztof Palczewski; Johannes von Lintig
Increasing evidence has been provided for a connection between retinoid metabolism and the activity of peroxisome proliferator receptors (Ppars) in the control of body fat reserves. Two different precursors for retinoids exist in the diet as preformed vitamin A (all-trans-retinol) and provitamin A (β,β-carotene). For retinoid production, β,β-carotene is converted to retinaldehyde by β,β-carotene monooxygenase 1 (Bcmo1). Previous analysis showed that Bcmo1 knock-out mice develop dyslipidemia and are more susceptible to diet-induced obesity. However, the role of Bcmo1 for adipocyte retinoid metabolism has yet not been well defined. Here, we showed that Bcmo1 mRNA and protein expression are induced during adipogenesis in NIH 3T3-L1 cells. In mature adipocytes, β,β-carotene but not all-trans-retinol was metabolized to retinoic acid (RA). RA decreased the expression of Pparγ and CCAAT/enhancer-binding protein α, key lipogenic transcription factors, and reduced the lipid content of mature adipocytes. This process was inhibited by the retinoic acid receptor antagonist LE450, showing that it involves canonical retinoid signaling. Accordingly, gavage of β,β-carotene but not all-trans-retinol induced retinoid signaling and decreased Pparγ expression in white adipose tissue of vitamin A-deficient mice. Our study identifies β,β-carotene as a critical physiological precursor for RA production in adipocytes and implicates provitamin A as a dietary regulator of body fat reserves.
PLOS ONE | 2011
Jaume Amengual; Erwan Gouranton; Yvonne G. J. van Helden; Susanne Hessel; Joan Ribot; Evelien Kramer; Beata Kiec-Wilk; Ursula Razny; Georg Lietz; Adrian Wyss; A. Dembinska-Kiec; Andreu Palou; Jaap Keijer; Jean François Landrier; M. Luisa Bonet; Johannes von Lintig
Evidence from cell culture studies indicates that β-carotene-(BC)-derived apocarotenoid signaling molecules can modulate the activities of nuclear receptors that regulate many aspects of adipocyte physiology. Two BC metabolizing enzymes, the BC-15,15′-oxygenase (Bcmo1) and the BC-9′,10′-oxygenase (Bcdo2) are expressed in adipocytes. Bcmo1 catalyzes the conversion of BC into retinaldehyde and Bcdo2 into β-10′-apocarotenal and β-ionone. Here we analyzed the impact of BC on body adiposity of mice. To genetically dissect the roles of Bcmo1 and Bcdo2 in this process, we used wild-type and Bcmo1 -/- mice for this study. In wild-type mice, BC was converted into retinoids. In contrast, Bcmo1-/- mice showed increased expression of Bcdo2 in adipocytes and β-10′-apocarotenol accumulated as the major BC derivative. In wild-type mice, BC significantly reduced body adiposity (by 28%), leptinemia and adipocyte size. Genome wide microarray analysis of inguinal white adipose tissue revealed a generalized decrease of mRNA expression of peroxisome proliferator-activated receptor γ (PPARγ) target genes. Consistently, the expression of this key transcription factor for lipogenesis was significantly reduced both on the mRNA and protein levels. Despite β-10′-apocarotenoid production, this effect of BC was absent in Bcmo1-/- mice, demonstrating that it was dependent on the Bcmo1-mediated production of retinoids. Our study evidences an important role of BC for the control of body adiposity in mice and identifies Bcmo1 as critical molecular player for the regulation of PPARγ activity in adipocytes
Journal of Nutritional Biochemistry | 2011
Josep Mercader; Andreu Palou; M. Luisa Bonet
Resveratrol is a naturally occurring polyphenol known to affect energy metabolism and insulin sensitivity in mice and lipogenic gene expression in adipocytes. Here, we sought to get further insight into the impact of resveratrol on adipocyte biology by studying its effects on oxidative metabolism and the expression of the insulin resistance-related adipokines resistin and Retinol-Binding Protein 4 (RBP4) in mature adipocytes. Effects were assessed in 3T3-L1 adipocytes and in adipocytes derived from primary mouse embryonic fibroblasts (MEF). Besides reducing triacylglycerol content and the mRNA levels of lipogenic genes, resveratrol treatment resulted in both models in increased mRNA levels of carnitine palmitoyltransferase 1 (a rate-limiting enzyme in mitochondrial fatty acid oxidation), reduced mRNA levels of receptor interacting protein 140 (a suppressor of oxidative metabolism), and signs of enhanced flux through the fatty acid beta-oxidation pathway. In primary MEF-derived adipocytes, the treatment also increased mitochondrial DNA content and the mRNA levels of subunit II of cytochrome oxidase (a component of the mitochondrial respiratory chain) and of uncoupling protein 1. Expression of resistin and RBP4 was reduced in both adipocyte models following resveratrol treatment. The results indicate that resveratrol directly acts in mature white adipocytes to favor a remodeling toward increased oxidative capacity and reduced lipogenesis, while down-regulating two putative insulin resistance factors. These results constitute novel insights into resveratrol action in adipocytes that add to the potential of this food phytochemical and its synthetic analogues for the control of obesity and related metabolic disorders.
European Journal of Cell Biology | 1998
Pere Puigserver; Joan Ribot; Francisca Serra; Magdalena Gianotti; M. Luisa Bonet; Bernardo Nadal-Ginard; Andreu Palout
We investigated the expression of the retinoblastoma protein (pRB) in adipocytes and its possible interaction with the adipogenic transcription factor CCAAT/enhancer-binding protein alpha (C/EBPalpha) in controlling the acquisition of the terminally differentiated adipocyte phenotype. The pRB was expressed (as measured by immunoblotting and/or immunofluorescence) in mice brown and white adipose tissue and in cultured adipocytes that showed lipid accumulation and expressed specific differentiation markers such as aP2 (measured using a specific cDNA probe) and in the case of brown adipocytes UCP-1 (measured using specific antibodies), but was undetectable in proliferative undifferentiated preadipocytes. Transient transfection experiments revealed a functional interaction between pRB and C/EBPalpha affecting transcription from the ucp-1 gene promoter. Thus, in immortalized brown adipocytes, co-transfection of both a C/EBPalpha and a pRB expression vectors maximally enhanced the expression of reporter chloramphenicol acetyltransferase driven by the ucp-1 promoter. Interestingly, C/EBPalpha inhibited reporter gene expression in CHO cells in an effect that was also potentiated in the presence of pRB. A positive effect of pRB on transcription from the ucp-1 promoter could be detected in C/EBPalpha-/-fibroblasts only after forced to overexpress C/EBPalpha, suggesting that the effect of pRB is dependent on its interaction with C/EBPalpha. We also found evidence that pRB and C/EBPalpha can directly bind to each other in vitro. Our results show that the expression of pRB is restricted to differentiated adipocytes, and provide evidence of a physical and functional interaction between pRB and C/EBPalpha that affects the transcriptional activity of the later on a brown adipocyte-specific gene.
Cellular Physiology and Biochemistry | 2010
Jaume Amengual; Joan Ribot; M. Luisa Bonet; Andreu Palou
Vitamin A, mainly as retinoic acid (RA), is known to affect the development and function of adipose tissues. Treatment with RA reduces body weight and adiposity independent of changes in food intake in mice. Lipid metabolism in liver can have a major impact on whole body adiposity. The aim of this work was to investigate the effects of an in vivo treatment with RA on hepatic lipid metabolism in mice. Adult, standard diet-fed mice were treated with different doses of all-trans RA or vehicle (subcutaneous injection) for 4 days before sacrifice. Food intake and body weight changes during treatment were determined, as well as adiposity, liver composition, levels of circulating metabolites and lipoproteins and expression levels of key mRNA species in liver following sacrifice. RA treatment resulted in reduced body weight and adiposity, as expected. In the liver, RA treatment triggered an increase in the mRNA expression levels of peroxisome proliferator-activated receptor alpha, retinoid X receptor alpha, uncoupling protein 2, liver-type carnitine palmitoyltransferase 1, and carnitine/acylcarnitine carrier, and a reduction in the mRNA expression levels of sterol regulatory element binding protein 1c and fatty acid synthase. Consistent with the changes in gene expression, hepatic triacylglycerol content and circulating VLDL fraction were reduced and levels of circulating ketone bodies increased after RA treatment. These results point to a capacity of active vitamin A forms to shift liver lipid metabolism in vivo towards increased catabolism and reduced lipogenesis. These effects might contribute to the reduction of adiposity brought about by RA treatment.
Archives of Biochemistry and Biophysics | 2015
M. Luisa Bonet; Jose A. Canas; Joan Ribot; Andreu Palou
A novel perspective of the function of carotenoids and carotenoid-derived products - including, but not restricted to, the retinoids - is emerging in recent years which connects these compounds to the control of adipocyte biology and body fat accumulation, with implications for the management of obesity, diabetes and cardiovascular disease. Cell and animal studies indicate that carotenoids and carotenoids derivatives can reduce adiposity and impact key aspects of adipose tissue biology including adipocyte differentiation, hypertrophy, capacity for fatty acid oxidation and thermogenesis (including browning of white adipose tissue) and secretory function. Epidemiological studies in humans associate higher dietary intakes and serum levels of carotenoids with decreased adiposity. Specifically designed human intervention studies, though still sparse, indicate a beneficial effect of carotenoid supplementation in the accrual of abdominal adiposity. The objective of this review is to summarize recent findings in this area, place them in physiological contexts, and provide likely regulatory schemes whenever possible. The focus will be on the effects of carotenoids as nutritional regulators of adipose tissue biology and both animal and human studies, which support a role of carotenoids and retinoids in the prevention of abdominal adiposity.
Obesity | 2008
Jaume Amengual; Joan Ribot; M. Luisa Bonet; Andreu Palou
Objective: All‐trans retinoic acid (ATRA), a carboxylic form of vitamin A, favors in mice a mobilization of body fat reserves that correlates with an increment of oxidative and thermogenic capacity in adipose tissues. The objective of this study has been to investigate the effect of ATRA treatment on skeletal muscle capacity for fatty‐acid catabolism.
Obesity | 2010
Josep M. Mercader; Andreu Palou; M. Luisa Bonet
The uncoupling protein‐1 (UCP1) is the molecular effector of thermogenesis in brown adipocytes, a process in which there is a renewed interest after the recent recognition of its relevance in adult humans. Typical white adipocytes do not express UCP1. We investigated the capacity of retinoic acid (RA), the carboxylic acid form of vitamin A and a known positive regulator of UCP1 gene transcription in brown adipocytes, to stimulate UCP1 expression in adipocytes differentiated in culture from primary mouse embryonic fibroblasts (MEFs), which are commonly used as white adipocyte model cells. Exposure to all‐trans RA (ATRA), but not to rosiglitazone or isoproterenol, potently induced UCP1 expression at both the mRNA and protein level in MEF‐derived adipocytes, in a dose‐dependent manner. The effect on UCP1 mRNA was reproduced by retinoid receptor agonists and by retinaldehyde, required p38 mitogen‐activated protein kinase activity (p38 MAPK), and appeared to be dissociated from increases in mitochondria biogenesis and oxidative capacity. MEF‐derived adipocytes exhibited a high mRNA expression level of the brown fat determination factor PRDM16. The results highlight a specific potential of retinoids to induce UCP1 gene expression in adipose cells, and may have implications for the elucidation of the signaling pathways to the UCP1 gene, as well as for research using MEF‐derived adipocytes.