Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Joan Rigau is active.

Publication


Featured researches published by Joan Rigau.


Plant Physiology | 2002

Down-Regulation of Caffeic Acid O-Methyltransferase in Maize Revisited Using a Transgenic Approach

Joël Piquemal; Simon Chamayou; Isabelle Nadaud; Michel Beckert; Yves Barrière; Isabelle Mila; Catherine Lapierre; Joan Rigau; Pere Puigdomènech; Alain Jauneau; Catherine Digonnet; Alain-Michel Boudet; Deborah Goffner; Magalie Pichon

Transgenic maize (Zea mays) plants were generated with a construct harboring a maize caffeic acidO-methyltransferase (COMT) cDNA in the antisense (AS) orientation under the control of the maize Adh1(alcohol dehydrogenase) promoter. Adh1-driven β-glucuronidase expression was localized in vascular tissues and lignifying sclerenchyma, indicating its suitability in transgenic experiments aimed at modifying lignin content and composition. One line of AS plants, COMT-AS, displayed a significant reduction in COMT activity (15%–30% residual activity) and barely detectable amounts of COMT protein as determined by western-blot analysis. In this line, transgenes were shown to be stably integrated in the genome and transmitted to the progeny. Biochemical analysis of COMT-AS showed: (a) a strong decrease in Klason lignin content at the flowering stage, (b) a decrease in syringyl units, (c) a lowerp-coumaric acid content, and (d) the occurrence of unusual 5-OH guaiacyl units. These results are reminiscent of some characteristics already observed for the maize bm3(brown-midrib3) mutant, as well as for COMT down-regulated dicots. However, as compared with bm3, COMT down-regulation in the COMT-AS line is less severe in that it is restricted to sclerenchyma cells. To our knowledge, this is the first time that an AS strategy has been applied to modify lignin biosynthesis in a grass species.


Plant Journal | 2010

ZmMYB31 directly represses maize lignin genes and redirects the phenylpropanoid metabolic flux.

Silvia Fornalé; Xinhui Shi; Chenglin Chai; Antonio Encina; Sami Irar; Montserrat Capellades; Elisabet Fuguet; Josep-Lluís Torres; Pere Rovira; Pere Puigdomènech; Joan Rigau; Erich Grotewold; John Gray; David Caparrós-Ruiz

Few regulators of phenylpropanoids have been identified in monocots having potential as biofuel crops. Here we demonstrate the role of the maize (Zea mays) R2R3-MYB factor ZmMYB31 in the control of the phenylpropanoid pathway. We determined its in vitro consensus DNA-binding sequence as ACC(T)/(A) ACC, and chromatin immunoprecipitation (ChIP) established that it interacts with two lignin gene promoters in vivo. To explore the potential of ZmMYB31 as a regulator of phenylpropanoids in other plants, its role in the regulation of the phenylpropanoid pathway was further investigated in Arabidopsis thaliana. ZmMYB31 downregulates several genes involved in the synthesis of monolignols and transgenic plants are dwarf and show a significantly reduced lignin content with unaltered polymer composition. We demonstrate that these changes increase cell wall degradability of the transgenic plants. In addition, ZmMYB31 represses the synthesis of sinapoylmalate, resulting in plants that are more sensitive to UV irradiation, and induces several stress-related proteins. Our results suggest that, as an indirect effect of repression of lignin biosynthesis, transgenic plants redirect carbon flux towards the biosynthesis of anthocyanins. Thus, ZmMYB31 can be considered a good candidate for the manipulation of lignin biosynthesis in biotechnological applications.


Plant Molecular Biology | 2006

Down-regulation of the maize and Arabidopsis thaliana caffeic acid O -methyl-transferase genes by two new maize R2R3-MYB transcription factors

Silvia Fornalé; Fathi-Mohamed Sonbol; Tamara Maes; Montserrat Capellades; Pere Puigdomènech; Joan Rigau; David Caparrós-Ruiz

The maize (Zea mays L.) caffeic acid O-methyl-transferase (COMT) is a key enzyme in the biosynthesis of lignin. In this work we have characterized the involvement of COMT in the lignification process through the study of the molecular mechanisms involved in its regulation. The examination of the maize COMT gene promoter revealed a putative ACIII box, typically recognized by R2R3-MYB transcription factors. We used the sequence of known R2R3-MYB factors to isolate five maize R2R3-MYB factors (ZmMYB2, ZmMYB8, ZmMYB31, ZmMYB39, and ZmMYB42) and study their possible roles as regulators of the maize COMT gene. The factors ZmMYB8, ZmMY31, and ZmMYB42 belong to the subgroup 4 of the R2R3-MYB family along with other factors associated with lignin biosynthesis repression. In addition, the induction pattern of ZmMYB31 and ZmMYB42 gene expression on wounding is that expected for repressors of the maize COMT gene. Arabidopsisthaliana plants over-expressing ZmMYB31 and ZmMYB42 down-regulate both the A. thaliana and the maize COMT genes. Furthermore, the over-expression of ZmMYB31 and ZmMYB42 also affect the expression of other genes of the lignin pathway and produces a decrease in lignin content of the transgenic plants.


Plant Molecular Biology | 2009

The maize ZmMYB42 represses the phenylpropanoid pathway and affects the cell wall structure, composition and degradability in Arabidopsis thaliana

Fathi-Mohamed Sonbol; Silvia Fornalé; Montserrat Capellades; Antonio Encina; Sonia Touriño; Josep-Lluís Torres; Pere Rovira; Katia Ruel; Pere Puigdomènech; Joan Rigau; David Caparrós-Ruiz

The involvement of the maize ZmMYB42 R2R3-MYB factor in the phenylpropanoid pathway and cell wall structure and composition was investigated by overexpression in Arabidopsis thaliana. ZmMYB42 down-regulates several genes of the lignin pathway and this effect reduces the lignin content in all lignified tissues. In addition, ZmMYB42 plants generate a lignin polymer with a decreased S to G ratio through the enrichment in H and G subunits and depletion in S subunits. This transcription factor also regulates other genes involved in the synthesis of sinapate esters and flavonoids. Furthermore, ZmMYB42 affects the cell wall structure and degradability, and its polysaccharide composition. Together, these results suggest that ZmMYB42 may be part of the regulatory network controlling the phenylpropanoid biosynthetic pathway.


Plant Molecular Biology | 1992

Structure and expression of the lignin O-methyltransferase gene from Zea mays L.

Pablo Collazo; Lluís Montoliu; Pere Puigdomènech; Joan Rigau

The isolation and characterization of cDNA and homologous genomic clones encoding the lignin O-methyltransferase (OMT) from maize is reported. The cDNA clone has been isolated by differential screening of maize root cDNA library. Southern analysis indicates that a single gene codes for this protein. The genomic sequence contains a single 916 bp intron. The deduced protein sequence from DNA shares significant homology with the recently reported lignin-bispecific caffeic acid/5-hydroxyferulic OMTs from alfalfa and aspen. It also shares homology with OMTs from bovine pineal glands and a purple non-sulfur photosynthetic bacterium. The mRNA of this gene is present at different levels in distinct organs of the plant with the highest accumulation detected in the elongation zone of roots. Bacterial extracts from clones containing the maize OMT cDNA show an activity in methylation of caffeic acid to ferulic acid comparable to that existing in the plant extracts. These results indicate that the described gene encodes the caffeic acid 3-O-methyltransferase (COMT) involved in the lignin biosynthesis of maize.


Plant Molecular Biology | 1990

A tandem of α-tubulin genes preferentially expressed in radicular tissues from Zea mays

Lluís Montoliu; Joan Rigau; Pere Puigdomènech

The identification of a cDNA (MR19) corresponding to a maize α-tubulin and homologous genomic clones (MG19/6 and MG19/14) is described. The cDNA has been isolated by differential screening of a cDNA maize root library. We have found two α-tubulin genes in a tandem arrangement in the genomic clones, separated by approximately 1.5 kbp. One of the genes (gene I) contains an identical nucleotide sequence which corresponds to the cDNA clone. The two deduced proteins from DNA sequences are very similar (only two conservative replacements in 451 amino acids) and they share a high homology as compared with the published α-tubulin sequences from other systems and in particular with the Arabidopsis thaliana and Chlamydomonas reinhardtii sequences reported. The structure of both genes is also very similar; it includes two introns, of 1.7 kbp and 0.8 kbp respectively, in each gene and only one intron placed at a homologous position in relation to Arabidopsis thaliana genes. By using specific 3′ probes it appears that both genes are preferentially expressed in the radicular system of the plant. The α-tubulin gene family of Zea mays seems to be represented by at least 3 or 4 members.


Molecular Plant | 2012

Altered lignin biosynthesis improves cellulosic bioethanol production in transgenic maize plants down-regulated for cinnamyl alcohol dehydrogenase.

Silvia Fornalé; Montserrat Capellades; Antonio Encina; Kan Wang; Sami Irar; Catherine Lapierre; Katia Ruel; Jean-Paul Joseleau; Jordi Berenguer; Pere Puigdomènech; Joan Rigau; David Caparrós-Ruiz

Cinnamyl alcohol dehydrogenase (CAD) is a key enzyme involved in the last step of monolignol biosynthesis. The effect of CAD down-regulation on lignin production was investigated through a transgenic approach in maize. Transgenic CAD-RNAi plants show a different degree of enzymatic reduction depending on the analyzed tissue and show alterations in cell wall composition. Cell walls of CAD-RNAi stems contain a lignin polymer with a slight reduction in the S-to-G ratio without affecting the total lignin content. In addition, these cell walls accumulate higher levels of cellulose and arabinoxylans. In contrast, cell walls of CAD-RNAi midribs present a reduction in the total lignin content and of cell wall polysaccharides. In vitro degradability assays showed that, although to a different extent, the changes induced by the repression of CAD activity produced midribs and stems more degradable than wild-type plants. CAD-RNAi plants grown in the field presented a wild-type phenotype and produced higher amounts of dry biomass. Cellulosic bioethanol assays revealed that CAD-RNAi biomass produced higher levels of ethanol compared to wild-type, making CAD a good target to improve both the nutritional and energetic values of maize lignocellulosic biomass.


BMC Genetics | 2004

Nucleotide diversity of the ZmPox3 maize peroxidase gene: relationships between a MITE insertion in exon 2 and variation in forage maize digestibility.

Carine Guillet-Claude; Christelle Birolleau-Touchard; Domenica Manicacci; Peter M. Rogowsky; Joan Rigau; Alain Murigneux; Jean-Pierre Martinant; Yves Barrière

BackgroundPolymorphisms were investigated within the ZmPox3 maize peroxidase gene, possibly involved in lignin biosynthesis because of its colocalization with a cluster of QTL related to lignin content and cell wall digestibility. The purpose of this study was to identify, on the basis of 37 maize lines chosen for their varying degrees of cell wall digestibility and representative of temperate regions germplasm, ZmPox3 haplotypes or individual polymorphisms possibly associated with digestibility.ResultsNumerous haplotypes with high diversity were identified. Frequency of nucleotide changes was high with on average one SNP every 57 bp. Nucleotide diversity was not equally distributed among site categories: the estimated π was on average eight times higher for silent sites than for non-synonymous sites. Numerous sites were in linkage disequilibrium that decayed with increasing physical distance. A zmPox3 mutant allele, carrying an insertion of a transposable element in the second exon, was found in lines derived from the early flint inbred line, F7. This element possesses many structural features of miniature inverted-repeat transposable elements (MITE). The mutant allele encodes a truncated protein lacking important functional sites. An ANOVA performed with a subset of 31 maize lines indicated that the transposable element was significantly associated with cell wall digestibility. This association was confirmed using an additional set of 25 flint lines related to F7. Moreover, RT-PCR experiments revealed a decreased amount of corresponding mRNA in plants with the MITE insertion.ConclusionThese results showed that ZmPox3 could possibly be involved in monolignol polymerisation, and that a deficiency in ZmPox3 peroxidase activity seemingly has a negative effect on cell wall digestibility. Also, genetic diversity analyses of ZmPox3 indicated that this peroxidase could be a relevant target for grass digestibility improvement using specific allele introgressions.


Plant Physiology | 2004

AtPng1p. The First Plant Transglutaminase

Massimiliano Della Mea; David Caparrós-Ruiz; I. Claparols; Donatella Serafini-Fracassini; Joan Rigau

Studies have revealed in plant chloroplasts, mitochondria, cell walls, and cytoplasm the existence of transglutaminase (TGase) activities, similar to those known in animals and prokaryotes having mainly structural roles, but no protein has been associated to this type of activity in plants. A recent computational analysis has shown in Arabidopsis the presence of a gene, AtPng1p, which encodes a putative N-glycanase. AtPng1p contains the Cys-His-Asp triad present in the TGase catalytic domain. AtPng1p is a single gene expressed ubiquitously in the plant but at low levels in all light-assayed conditions. The recombinant AtPng1p protein could be immuno-detected using animal TGase antibodies. Furthermore, western-blot analysis using antibodies raised against the recombinant AtPng1p protein have lead to its detection in microsomal fraction. The purified protein links polyamines—spermine (Spm) > spermidine (Spd) > putrescine (Put)—and biotin-cadaverine to dimethylcasein in a calcium-dependent manner. Analyses of the γ-glutamyl-derivatives revealed that the formation of covalent linkages between proteins and polyamines occurs via the transamidation of γ-glutamyl residues of the substrate, confirming that the AtPng1p gene product acts as a TGase. The Ca2+- and GTP-dependent cross-linking activity of the AtPng1p protein can be visualized by the polymerization of bovine serum albumine, obtained, like the commercial TGase, at basic pH and in the presence of dithiotreitol. To our knowledge, this is the first reported plant protein, characterized at molecular level, showing TGase activity, as all its parameters analyzed so far agree with those typically exhibited by the animal TGases.


Plant Science | 1999

Molecular cloning of cDNAs coding for three sugarcane enzymes involved in lignification

Guillermo Selman-Housein; Marı́a A. López; Doramys Hernández; Laura Civardi; Frank Miranda; Joan Rigau; Pere Puigdomènech

Full-length cDNAs encoding the monolignol biosynthetic enzymes caffeic acid 3-O-methyltransferase (COMT, EC 2.1.1.6), cinnamoyl-CoA reductase (CCR, EC 1.2.1.44) and cinnamyl alcohol dehydrogenase (CAD, EC 1.1.1.195) were cloned from sugarcane (Saccharum officinarum L.). The encoded proteins (39.6, 40.1 and 38.7 kDa for COMT, CCR and CAD, respectively) were identified based on their sequence identities with the corresponding enzymes from other plant species. Pairwise comparisons of deduced amino acid sequences with known plant lignification proteins allowed the identification of important conserved domains and specific functional motifs within these enzymes. Two new conserved domains, probably involved in substrate specificity, are described for COMTs. Phylogenetic analysis showed a very close evolutionary relationship between sugarcane and maize sequences. Southern blot analyses are consistent with the presence of at least two copies of each studied gene in sugarcane genome. The comt, ccr and cad transcripts appear to happen in a parallel way in different sugarcane tissues. The mRNA accumulation patterns suggest a transcriptional regulation of these genes dependent on their specific role in lignin synthesis. The cloning and characterisation of sugarcane genes involved in lignification opens up the possibility of producing plants with lower and/or modified lignin by genetic engineering means.

Collaboration


Dive into the Joan Rigau's collaboration.

Top Co-Authors

Avatar

Pere Puigdomènech

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

David Caparrós-Ruiz

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Silvia Fornalé

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Montserrat Capellades

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lluís Montoliu

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Laura Civardi

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Jorge Rencoret

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Alain Murigneux

École normale supérieure de Lyon

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge