Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Pere Puigdomènech is active.

Publication


Featured researches published by Pere Puigdomènech.


Proceedings of the National Academy of Sciences of the United States of America | 2012

The genome of melon (Cucumis melo L.)

Jordi Garcia-Mas; Andrej Benjak; Walter Sanseverino; Michael Bourgeois; Gisela Mir; Victor Gonzalez; Elizabeth Hénaff; Francisco Câmara; Luca Cozzuto; Ernesto Lowy; Tyler Alioto; Salvador Capella-Gutiérrez; José Blanca; Joaquín Cañizares; Pello Ziarsolo; Daniel Gonzalez-Ibeas; Luis Rodríguez-Moreno; Marcus Droege; Lei Du; Miguel Alvarez-Tejado; Belen Lorente-Galdos; Marta Melé; Luming Yang; Yiqun Weng; Arcadi Navarro; Tomas Marques-Bonet; Miguel A. Aranda; Fernando Nuez; Belén Picó; Toni Gabaldón

We report the genome sequence of melon, an important horticultural crop worldwide. We assembled 375 Mb of the double-haploid line DHL92, representing 83.3% of the estimated melon genome. We predicted 27,427 protein-coding genes, which we analyzed by reconstructing 22,218 phylogenetic trees, allowing mapping of the orthology and paralogy relationships of sequenced plant genomes. We observed the absence of recent whole-genome duplications in the melon lineage since the ancient eudicot triplication, and our data suggest that transposon amplification may in part explain the increased size of the melon genome compared with the close relative cucumber. A low number of nucleotide-binding site–leucine-rich repeat disease resistance genes were annotated, suggesting the existence of specific defense mechanisms in this species. The DHL92 genome was compared with that of its parental lines allowing the quantification of sequence variability in the species. The use of the genome sequence in future investigations will facilitate the understanding of evolution of cucurbits and the improvement of breeding strategies.


Journal of Chemical Neuroanatomy | 2000

Phosphodiesterase type 4 isozymes expression in human brain examined by in situ hybridization histochemistry and[3H]rolipram binding autoradiography. Comparison with monkey and rat brain.

Silvia Pérez-Torres; Xavier Miró; J.M Palacios; Roser Cortés; Pere Puigdomènech; Guadalupe Mengod

We have examined the distribution of four different cyclic AMP-specific phosphodiesterase isozyme (PDE4A, PDE4B, PDE4C and PDE4D) mRNAs in the brain of different species by in situ hybridization histochemistry and by autoradiography with [3H]rolipram. We have compared the localization of each isozyme in human brain with that in rat and monkey brain. We have found that the four PDE4 isoforms display a differential expression pattern at both regional and cellular level in the three species. PDE4A, PDE4B and PDE4D are widely distributed in human brain, with the two latter appearing more abundant. In contrast, PDE4C in human brain, presents a more restricted distribution, limited to cortex, some thalamic nuclei and cerebellum. This is at variance with the distribution of PDE4C in rat brain, where it is found exclusively in olfactory bulb. In monkey brain, the highest expression for this isoform is found in the claustrum, and at lower levels in cortical areas and cerebellum. PDE4B presented a broad distribution, being expressed in both neuronal and non neuronal cell populations. In general, the distribution of binding sites visualized with [3H]rolipram correlated well with the expression of each PDE4 isozyme.


Transgenic Research | 2003

A Specific Real-Time Quantitative PCR Detection System for Event MON810 in Maize YieldGard® Based on the 3′-Transgene Integration Sequence

Marta I. Hernández; Maria Pla; Teresa Esteve; Salomé Prat; Pere Puigdomènech; Alejandro Ferrando

The increasing presence of transgenic plant derivatives in a wide range of animal and human consumables has provoked in western Europe a strong demand for appropriate detection methods to evaluate the existence of transgenic elements. Among the different techniques currently used, the real-time quantitative PCR is a powerful technology well adapted to the mandatory labeling requirements in the European Union (EU). The use of transgene flanking genomic sequences has recently been suggested as a means to avoid ambiguous results both in qualitative and quantitative PCR-based technologies. In this study we report the identification of genomic sequences adjacent to the 3′-integration site of event MON810 in transgenic maize. This genetically modified crop contains transgene sequences leading to ectopic expression of a synthetic CryIA(b) endotoxin which confers resistance to lepidopteran insects especially against the European corn borer. The characterization of the genome–transgene junction sequences by means of TAIL-PCR has facilitated the design of a specific, sensitive and accurate quantification method based on TaqMan chemistry. Cloning of event MON810 3′-junction region has also allowed to compare the suitability of plasmid target sequences versus genomic DNA obtained from certified reference materials (CRMs), to prepare standard calibration curves for quantification.


Plant Physiology | 2002

Down-Regulation of Caffeic Acid O-Methyltransferase in Maize Revisited Using a Transgenic Approach

Joël Piquemal; Simon Chamayou; Isabelle Nadaud; Michel Beckert; Yves Barrière; Isabelle Mila; Catherine Lapierre; Joan Rigau; Pere Puigdomènech; Alain Jauneau; Catherine Digonnet; Alain-Michel Boudet; Deborah Goffner; Magalie Pichon

Transgenic maize (Zea mays) plants were generated with a construct harboring a maize caffeic acidO-methyltransferase (COMT) cDNA in the antisense (AS) orientation under the control of the maize Adh1(alcohol dehydrogenase) promoter. Adh1-driven β-glucuronidase expression was localized in vascular tissues and lignifying sclerenchyma, indicating its suitability in transgenic experiments aimed at modifying lignin content and composition. One line of AS plants, COMT-AS, displayed a significant reduction in COMT activity (15%–30% residual activity) and barely detectable amounts of COMT protein as determined by western-blot analysis. In this line, transgenes were shown to be stably integrated in the genome and transmitted to the progeny. Biochemical analysis of COMT-AS showed: (a) a strong decrease in Klason lignin content at the flowering stage, (b) a decrease in syringyl units, (c) a lowerp-coumaric acid content, and (d) the occurrence of unusual 5-OH guaiacyl units. These results are reminiscent of some characteristics already observed for the maize bm3(brown-midrib3) mutant, as well as for COMT down-regulated dicots. However, as compared with bm3, COMT down-regulation in the COMT-AS line is less severe in that it is restricted to sclerenchyma cells. To our knowledge, this is the first time that an AS strategy has been applied to modify lignin biosynthesis in a grass species.


Plant Journal | 2010

ZmMYB31 directly represses maize lignin genes and redirects the phenylpropanoid metabolic flux.

Silvia Fornalé; Xinhui Shi; Chenglin Chai; Antonio Encina; Sami Irar; Montserrat Capellades; Elisabet Fuguet; Josep-Lluís Torres; Pere Rovira; Pere Puigdomènech; Joan Rigau; Erich Grotewold; John Gray; David Caparrós-Ruiz

Few regulators of phenylpropanoids have been identified in monocots having potential as biofuel crops. Here we demonstrate the role of the maize (Zea mays) R2R3-MYB factor ZmMYB31 in the control of the phenylpropanoid pathway. We determined its in vitro consensus DNA-binding sequence as ACC(T)/(A) ACC, and chromatin immunoprecipitation (ChIP) established that it interacts with two lignin gene promoters in vivo. To explore the potential of ZmMYB31 as a regulator of phenylpropanoids in other plants, its role in the regulation of the phenylpropanoid pathway was further investigated in Arabidopsis thaliana. ZmMYB31 downregulates several genes involved in the synthesis of monolignols and transgenic plants are dwarf and show a significantly reduced lignin content with unaltered polymer composition. We demonstrate that these changes increase cell wall degradability of the transgenic plants. In addition, ZmMYB31 represses the synthesis of sinapoylmalate, resulting in plants that are more sensitive to UV irradiation, and induces several stress-related proteins. Our results suggest that, as an indirect effect of repression of lignin biosynthesis, transgenic plants redirect carbon flux towards the biosynthesis of anthocyanins. Thus, ZmMYB31 can be considered a good candidate for the manipulation of lignin biosynthesis in biotechnological applications.


Plant Molecular Biology | 2006

A microarray-based detection system for genetically modified (GM) food ingredients

S. Leimanis; Marta I. Hernández; Sophie Fernández; Francine Boyer; Malcolm Burns; Shirin Bruderer; Thomas Glouden; Neil Harris; Othmar Kaeppeli; Patrick Philipp; Maria Pla; Pere Puigdomènech; Marc Vaitilingom; Yves Bertheau; José Remacle

A multiplex DNA microarray chip was developed for simultaneous identification of nine genetically modified organisms (GMOs), five plant species and three GMO screening elements, i.e. the 35S promoter, the nos terminator and the nptII gene. The chips also include several controls, such as that for the possible presence of CaMV. The on-chip detection was performed directly with PCR amplified products. Particular emphasis was placed on the reduction of the number of PCR reactions required and on the number of primers present per amplification tube. The targets were biotin labelled and the arrays were detected using a colorimetric methodology. Specificity was provided by specific capture probes designed for each GMO and for the common screening elements. The sensitivity of the assay was tested by experiments carried out in five different laboratories. The limit of detection was lower than 0.3% GMO for all tests and in general around 0.1% for most GMOs. The chip detection system complies with the requirements of current EU regulations and other countries where thresholds are established for the labelling of GMO.


Theoretical and Applied Genetics | 1995

A linkage map with RFLP and isozyme markers for almond.

M. A. Viruel; Ramon Messeguer; M. C. de Vicente; Jordi Garcia-Mas; Pere Puigdomènech; F. J. Vargas; Pere Arús

Inheritance and linkage studies were conducted with seven isozyme genes and 120 RFLPs in the F1 progeny of a cross between almond cultivars ‘Ferragnes’ and ‘Tuono’. RFLPs were detected using 57 genomic and 43 cDNA almond clones. Eight of the cDNA probes corresponded to known genes (extensin, prunin (2), α-tubulin, endopolygalacturonase, oleosin, actin depolymerizing factor and phosphoglyceromutase). Single-copy clones were found more frequently in the cDNA (65%) than in the genomic libraries (26%). Two maps were elaborated, one with the 93 loci heterozygous in ‘Ferragnes’ and another with the 69 loci heterozygous in ‘Tuono’. Thirty-five loci were heterozygous in both parents and were used as bridges between both maps. Most of the segregations (91%) were of the 1∶1 or 1∶1∶1∶1 types, and data were analyzed as if they derived from two backcross populations. Eight linkage groups covering 393 cM in ‘Ferragnes’ and 394 in ‘Tuono’ were found for each map. None of the loci examined in either map was found to be unlinked. Distorted segregation ratios were mainly concentrated in two linkage groups of the ‘Ferragnes’ map.


Plant Molecular Biology | 2006

Down-regulation of the maize and Arabidopsis thaliana caffeic acid O -methyl-transferase genes by two new maize R2R3-MYB transcription factors

Silvia Fornalé; Fathi-Mohamed Sonbol; Tamara Maes; Montserrat Capellades; Pere Puigdomènech; Joan Rigau; David Caparrós-Ruiz

The maize (Zea mays L.) caffeic acid O-methyl-transferase (COMT) is a key enzyme in the biosynthesis of lignin. In this work we have characterized the involvement of COMT in the lignification process through the study of the molecular mechanisms involved in its regulation. The examination of the maize COMT gene promoter revealed a putative ACIII box, typically recognized by R2R3-MYB transcription factors. We used the sequence of known R2R3-MYB factors to isolate five maize R2R3-MYB factors (ZmMYB2, ZmMYB8, ZmMYB31, ZmMYB39, and ZmMYB42) and study their possible roles as regulators of the maize COMT gene. The factors ZmMYB8, ZmMY31, and ZmMYB42 belong to the subgroup 4 of the R2R3-MYB family along with other factors associated with lignin biosynthesis repression. In addition, the induction pattern of ZmMYB31 and ZmMYB42 gene expression on wounding is that expected for repressors of the maize COMT gene. Arabidopsisthaliana plants over-expressing ZmMYB31 and ZmMYB42 down-regulate both the A. thaliana and the maize COMT genes. Furthermore, the over-expression of ZmMYB31 and ZmMYB42 also affect the expression of other genes of the lignin pathway and produces a decrease in lignin content of the transgenic plants.


Plant Molecular Biology | 2009

The maize ZmMYB42 represses the phenylpropanoid pathway and affects the cell wall structure, composition and degradability in Arabidopsis thaliana

Fathi-Mohamed Sonbol; Silvia Fornalé; Montserrat Capellades; Antonio Encina; Sonia Touriño; Josep-Lluís Torres; Pere Rovira; Katia Ruel; Pere Puigdomènech; Joan Rigau; David Caparrós-Ruiz

The involvement of the maize ZmMYB42 R2R3-MYB factor in the phenylpropanoid pathway and cell wall structure and composition was investigated by overexpression in Arabidopsis thaliana. ZmMYB42 down-regulates several genes of the lignin pathway and this effect reduces the lignin content in all lignified tissues. In addition, ZmMYB42 plants generate a lignin polymer with a decreased S to G ratio through the enrichment in H and G subunits and depletion in S subunits. This transcription factor also regulates other genes involved in the synthesis of sinapate esters and flavonoids. Furthermore, ZmMYB42 affects the cell wall structure and degradability, and its polysaccharide composition. Together, these results suggest that ZmMYB42 may be part of the regulatory network controlling the phenylpropanoid biosynthetic pathway.


Plant Molecular Biology | 1992

Structure and expression of the lignin O-methyltransferase gene from Zea mays L.

Pablo Collazo; Lluís Montoliu; Pere Puigdomènech; Joan Rigau

The isolation and characterization of cDNA and homologous genomic clones encoding the lignin O-methyltransferase (OMT) from maize is reported. The cDNA clone has been isolated by differential screening of maize root cDNA library. Southern analysis indicates that a single gene codes for this protein. The genomic sequence contains a single 916 bp intron. The deduced protein sequence from DNA shares significant homology with the recently reported lignin-bispecific caffeic acid/5-hydroxyferulic OMTs from alfalfa and aspen. It also shares homology with OMTs from bovine pineal glands and a purple non-sulfur photosynthetic bacterium. The mRNA of this gene is present at different levels in distinct organs of the plant with the highest accumulation detected in the elongation zone of roots. Bacterial extracts from clones containing the maize OMT cDNA show an activity in methylation of caffeic acid to ferulic acid comparable to that existing in the plant extracts. These results indicate that the described gene encodes the caffeic acid 3-O-methyltransferase (COMT) involved in the lignin biosynthesis of maize.

Collaboration


Dive into the Pere Puigdomènech's collaboration.

Top Co-Authors

Avatar

Joan Rigau

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Jordi Garcia-Mas

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Amparo Monfort

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Josep Casacuberta

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Pere Arús

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Jaume Palau

Autonomous University of Barcelona

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Miguel A. Aranda

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Virginia Stiefel

Spanish National Research Council

View shared research outputs
Researchain Logo
Decentralizing Knowledge