Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Joanna D. Haigh is active.

Publication


Featured researches published by Joanna D. Haigh.


Weather | 2002

Radiative forcing of climate change

Joanna D. Haigh

Our current understanding of mechanisms that are, or may be, acting to cause climate change over the past century is briefly reviewed, with an emphasis on those due to human activity. The paper discusses the general level of confidence in these estimates and areas of remaining uncertainty. The effects of increases in the so-called well-mixed greenhouse gases, and in particular carbon dioxide, appear to be the dominant mechanism. However, there are considerable uncertainties in our estimates of many other forcing mechanisms; those associated with the so-called indirect aerosol forcing (whereby changes in aerosols can impact on cloud properties) may be the most serious, as its climatic effect may be of a similar size as, but opposite sign to, that due to carbon dioxide. The possible role of volcanic eruptions as a natural climate change mechanism is also highlighted.


Reviews of Geophysics | 2010

SOLAR INFLUENCES ON CLIMATE

Lesley J. Gray; J. Beer; Marvin A. Geller; Joanna D. Haigh; Mike Lockwood; Katja Matthes; Ulrich Cubasch; Dominik Fleitmann; G. Harrison; L. L. Hood; Jürg Luterbacher; Gerald A. Meehl; Drew T. Shindell; B. van Geel; W. White

The development of this review article has evolved from work carried out by an international team of the International Space Science Institute (ISSI), Bern, Switzerland, and from work carried out under the auspices of Scientific Committee on Solar Terrestrial Physics (SCOSTEP) Climate and Weather of the Sun‐Earth System (CAWSES‐1). The support of ISSI in providing workshop and meeting facilities is acknowledged, especially support from Y. Calisesi and V. Manno. SCOSTEP is acknowledged for kindly providing financial assistance to allow the paper to be published under an open access policy. L.J.G. was supported by the UK Natural Environment Research Council (NERC) through their National Centre for Atmospheric Research (NCAS) Climate program. K.M. was supported by a Marie Curie International Outgoing Fellowship within the 6th European Community Framework Programme. J.L. acknowledges support by the EU/FP7 program Assessing Climate Impacts on the Quantity and Quality of Water (ACQWA, 212250) and from the DFG Project Precipitation in the Past Millennium in Europe (PRIME) within the Priority Program INTERDYNAMIK. L.H. acknowledges support from the U.S. NASA Living With a Star program. G.M. acknowledges support from the Office of Science (BER), U.S. Department of Energy, Cooperative Agreement DE‐FC02‐97ER62402, and the National Science Foundation. We also wish to thank Karin Labitzke and Markus Kunze for supplying an updated Figure 13, Andrew Heaps for technical support, and Paul Dickinson for editorial support. Part of the research was carried out under the SPP CAWSES funded by GFG. J.B. was financially supported by NCCR Climate–Swiss Climate Research.


Philosophical Transactions of the Royal Society A | 2003

The effects of solar variability on the Earth's climate

Joanna D. Haigh

The absolute value of total solar irradiance is not known to better than ca.0.3% but measurements from satellite instruments over the past two solar cycles have shown that it varies by ca.0.1% on this time-scale. Over longer periods its value has been reconstructed using proxy measures of solar activity, and these suggest that during the Maunder minimum in solar activity of the late 17th century it was 3−4 W m−2 lower than at present. Observational data suggest that the Sun has influenced temperatures on decadal, centennial and millennial time-scales, but radiative forcing considerations and the results of energy-balance models and general circulation models suggest that the warming during the latter part of the 20th century cannot be ascribed entirely to solar effects. However, chemical and dynamical processes in the middle atmosphere may act to amplify the solar impact. An analysis of zonal mean temperature data shows that solar effects may be differentiated from those associated with other factors such as volcanic eruptions and the El Niño Southern Oscillation.


Journal of Climate | 2005

The Response of Tropospheric Circulation to Perturbations in Lower-Stratospheric Temperature

Joanna D. Haigh; Michael Blackburn; Rebecca Day

A multiple regression analysis of the NCEP-NCAR reanalysis dataset shows a response to increased solar activity of a weakening and poleward shift of the subtropical jets. This signal is separable from other influences, such as those of El Nino-Southern Oscillation (ENSO) and the North Atlantic Oscillation (NAO), and is very similar to that seen in previous studies using global circulation models (GCMs) of the effects of an increase in solar spectral irradiance. The response to increased stratospheric (volcanic) aerosol is found in the data to be a weakening and equatorward shift of the jets. The GCM studies of the solar influence also showed an impact on tropospheric mean meridional circulation with a weakening and expansion of the tropical Hadley cells and a poleward shift of the Ferrel cells. To understand the mechanisms whereby the changes in solar irradiance affect tropospheric winds and circulation, experiments have been carried out with a simplified global circulation model. The results show that generic heating of the lower stratosphere tends to weaken the subtropical jets and the tropospheric mean meridional circulations. The positions of the jets, and the extent of the Hadley cells, respond to the distribution of the stratospheric heating, with low-latitude heating forcing them to move poleward, and high-latitude or latitudinally uniform heating forcing them equatorward. The patterns of response are similar to those that are found to be a result of the solar or volcanic influences, respectively, in the data analysis. This demonstrates that perturbations to the heat balance of the lower stratosphere, such as those brought about by solar or volcanic activity, can produce changes in the mean tropospheric circulation, even without any direct forcing below the tropopause.


Nature | 2010

An influence of solar spectral variations on radiative forcing of climate

Joanna D. Haigh; Ann R. Winning; Ralf Toumi; Jerald W. Harder

The thermal structure and composition of the atmosphere is determined fundamentally by the incoming solar irradiance. Radiation at ultraviolet wavelengths dissociates atmospheric molecules, initiating chains of chemical reactions—specifically those producing stratospheric ozone—and providing the major source of heating for the middle atmosphere, while radiation at visible and near-infrared wavelengths mainly reaches and warms the lower atmosphere and the Earth’s surface. Thus the spectral composition of solar radiation is crucial in determining atmospheric structure, as well as surface temperature, and it follows that the response of the atmosphere to variations in solar irradiance depends on the spectrum. Daily measurements of the solar spectrum between 0.2 µm and 2.4 µm, made by the Spectral Irradiance Monitor (SIM) instrument on the Solar Radiation and Climate Experiment (SORCE) satellite since April 2004, have revealed that over this declining phase of the solar cycle there was a four to six times larger decline in ultraviolet than would have been predicted on the basis of our previous understanding. This reduction was partially compensated in the total solar output by an increase in radiation at visible wavelengths. Here we show that these spectral changes appear to have led to a significant decline from 2004 to 2007 in stratospheric ozone below an altitude of 45 km, with an increase above this altitude. Our results, simulated with a radiative-photochemical model, are consistent with contemporaneous measurements of ozone from the Aura-MLS satellite, although the short time period makes precise attribution to solar effects difficult. We also show, using the SIM data, that solar radiative forcing of surface climate is out of phase with solar activity. Currently there is insufficient observational evidence to validate the spectral variations observed by SIM, or to fully characterize other solar cycles, but our findings raise the possibility that the effects of solar variability on temperature throughout the atmosphere may be contrary to current expectations.


Journal of the Atmospheric Sciences | 2009

The Role of Eddies in Driving the Tropospheric Response to Stratospheric Heating Perturbations

Isla R. Simpson; Michael Blackburn; Joanna D. Haigh

A simplified general circulation model has been used to investigate the chain of causality whereby changes in tropospheric circulation and temperature are produced in response to stratospheric heating perturbations. Spinup ensemble experiments have been performed to examine the evolution of the tropospheric circulation in response to such perturbations. The primary aim of these experiments is to investigate the possible mechanisms whereby a tropospheric response to changing solar activity over the 11-yr solar cycle could be produced in response to heating of the equatorial lower stratosphere. This study therefore focuses on a stratospheric heating perturbation in which the heating is largest in the tropics. For comparison, experiments are also performed in which the stratosphere is heated uniformly at all latitudes and in which it is heated preferentially in the polar region. Thus, the mechanisms discussed have a wider relevance for the impact of stratospheric perturbations on the troposphere. The results demonstrate the importance of changing eddy momentum fluxes in driving the tropospheric response. This is confirmed by the lack of a similar response in a zonally symmetric model with fixed eddy forcing. Furthermore, it is apparent that feedback between the tropospheric eddy fluxes and tropospheric circulation changes is required to produce the full model response. The quasigeostrophic index of refraction is used to diagnose the cause of the changes in eddy behavior. It is demonstrated that the latitudinal extent of stratospheric heating is important in determining the direction of displacement of the tropospheric jet and storm track.


Annual Review of Astronomy and Astrophysics | 2013

Solar Irradiance Variability and Climate

S. K. Solanki; N. A. Krivova; Joanna D. Haigh

The brightness of the Sun varies on all timescales on which it has been observed, and there is increasing evidence that this has an influence on climate. The amplitudes of such variations depend on the wavelength and possibly the timescale. Although many aspects of this variability are well established, the exact magnitude of secular variations (going beyond a solar cycle) and the spectral dependence of variations are under discussion. The main drivers of solar variability are thought to be magnetic features at the solar surface. The climate response can be, on a global scale, largely accounted for by simple energetic considerations, but understanding the regional climate effects is more difficult. Promising mechanisms for such a driving have been identified, including through the influence of UV irradiance on the stratosphere and dynamical coupling to the surface. Here, we provide an overview of the current state of our knowledge, as well as of the main open questions.


Geophysical Research Letters | 1996

The role of microphysical and chemical processes in prolonging the climate forcing of the Toba Eruption

Slimane Bekki; J. A. Pyle; Wenyi Zhong; Ralf Toumi; Joanna D. Haigh; David M. Pyle

The mega-eruption of Toba, Sumatra, occurred around 73 Ka ago, during the onset of a glaciation of the Late Quaternary. This coincidence combined with the unprecedented amount of sulphur released by this volcano has led to the hypothesis that Toba sulphate aerosols caused a transient surface cooling which may have contributed to a shift of the climate system. Because of the self limiting effect of gravitational sedimentation, the climatic impact of extremely large sulphur injections into the stratosphere are thought to be rather limited. Here we present model calculations combining microphysical and chemical feedbacks which show that the eruption could instead have led to the formation of a long-lasting volcanic aerosol layer. Although the concentrations of radiatively active species such as O3 or SO2 could also have been considerably perturbed, the resulting forcings should have only slightly moderated the aerosol cooling effect during the first few years following the eruption. According to our results, extremely high stratospheric sulphur loading could lead to a more prolonged effect on the climate than previously assumed.


Geophysical Research Letters | 1999

Some doubts concerning a link between cosmic ray fluxes and global cloudiness

Simon C. Kernthaler; Ralf Toumi; Joanna D. Haigh

Svensmark and Friis-Christensen (1997, henceforth SFC) showed a strong correlation between cosmic ray flux and ISCCP total cloudiness between 1984 and 1990. They concluded that ionisation by cosmic rays, more prevalent at times of lower solar activity, might explain apparent correlations between solar activity and climate through changes in cloud radiative forcing. We have extended SFCs approach with a study of the different cloud types, restricting our analysis to the period 1985 to 1988 during which the ISCCP calibration is believed to be stable. We find no clear relationship between individual cloud types and cosmic ray flux. Inclusion of data at high latitudes decreases the amplitude of the apparent correlation although ionisation by cosmic rays is greatest at high latitudes. Thin high cloud shows an increase throughout the period such that the combined effect of the changes in cloud types suggests an almost monotonic increase in cloud radiative forcing between 1985 and 1988 which is not related to cosmic ray activity.


Journal of Atmospheric and Solar-Terrestrial Physics | 1999

Modelling the impact of solar variability on climate

Joanna D. Haigh

Abstract Computer simulations of the impact on climate of solar variability generally fall into four categories. First, there are lower atmosphere GCM experiments, in which enhanced solar activity is represented by changes in spectrally integrated solar constant. Secondly, there are GCM studies of the dynamical response of the middle atmosphere to changes in solar ultraviolet, mainly concentrating on the northern hemisphere winter, and how these impact the troposphere. These studies have been instructive in providing an understanding of some of the mechanisms involved but, because of the very different nature of the assumptions made, give rather different suggestions as to potential patterns of change. In particular predicted zonal mean temperature changes in the lower stratosphere are usually of opposite sign in these two types of experiment. None of these GCM studies include interactive photochemistry and the third category of modelling work is concerned with the photochemical response of the middle atmosphere to enhanced solar ultraviolet. These generally employ 2D models to predict changes in ozone and other gaseous species. Recently it has been realised that the responses (to a variety of external forcings) of the lower and middle atmospheres are linked through both radiative and dynamical mechanisms and should not be viewed in isolation from each other. Thus the fourth type of modelling study, which is still in its infancy, attempts to represent solar variability by realistic changes in both irradiance and ozone concentrations. In this paper these various modelling studies are reviewed and some new results presented which confirm previous theoretical suggestions that, in the northern hemisphere winter, the atmosphere may respond to solar changes in a similar way as to the injection of volcanic aerosol. The implications of the results of the model studies for the detection of solar-induced climate change are discussed.

Collaboration


Dive into the Joanna D. Haigh's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Wenyi Zhong

Imperial College London

View shared research outputs
Top Co-Authors

Avatar

Ralf Toumi

Imperial College London

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

D. Mortlock

Imperial College London

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge