Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Joanna Moreton is active.

Publication


Featured researches published by Joanna Moreton.


PLOS ONE | 2012

High through-put sequencing of the Parhyale hawaiensis mRNAs and microRNAs to aid comparative developmental studies.

Martin J. Blythe; Sunir Malla; Richard Everall; Yu-huan Shih; Virginie Lemay; Joanna Moreton; Raymond Wilson; A. Aziz Aboobaker

Understanding the genetic and evolutionary basis of animal morphological diversity will require comparative developmental studies that use new model organisms. This necessitates development of tools for the study of genetics and also the generation of sequence information of the organism to be studied. The development of next generation sequencing technology has enabled quick and cost effective generation of sequence information. Parhyale hawaiensis has emerged as a model organism of choice due to the development of advanced molecular tools, thus P. hawaiensis genetic information will help drive functional studies in this organism. Here we present a transcriptome and miRNA collection generated using next generation sequencing platforms. We generated approximately 1.7 million reads from a P. hawaiensis cDNA library constructed from embryos up to the germ band stage. These reads were assembled into a dataset comprising 163,501 transcripts. Using the combined annotation of Annot8r and pfam2go, Gene Ontology classifications was assigned to 20,597 transcripts. Annot8r was used to provide KEGG orthology to our transcript dataset. A total of 25,292 KEGG pathway assignments were defined and further confirmed with reciprocal blast against the NCBI nr protein database. This has identified many P. hawaiensis gene orthologs of key conserved signalling pathways involved in development. We also generated small RNA sequences from P. hawaiensis, identifying 55 conserved miRNAs. Sequenced small RNAs that were not annotated by stringent comparison to mirBase were used to search the Daphnia pulex for possible novel miRNAs. Using a conservative approach, we have identified 51 possible miRNA candidates conserved in the Daphnia pulex genome, which could be potential crustacean/arthropod specific miRNAs. Our study presents gene and miRNA discovery in a new model organism that does not have a sequenced genome. The data provided by our work will be valuable for the P. hawaiensis community as well as the wider evolutionary developmental biology community.


Frontiers in Genetics | 2014

A consensus approach to vertebrate de novo transcriptome assembly from RNA-seq data: assembly of the duck (Anas platyrhynchos) transcriptome

Joanna Moreton; Stephen P. Dunham; Richard D. Emes

For vertebrate organisms where a reference genome is not available, de novo transcriptome assembly enables a cost effective insight into the identification of tissue specific or differentially expressed genes and variation of the coding part of the genome. However, since there are a number of different tools and parameters that can be used to reconstruct transcripts, it is difficult to determine an optimal method. Here we suggest a pipeline based on (1) assessing the performance of three different assembly tools (2) using both single and multiple k-mer (MK) approaches (3) examining the influence of the number of reads used in the assembly (4) merging assemblies from different tools. We use an example dataset from the vertebrate Anas platyrhynchos domestica (Pekin duck). We find that taking a subset of data enables a robust assembly to be produced by multiple methods without the need for very high memory capacity. The use of reads mapped back to transcripts (RMBT) and CEGMA (Core Eukaryotic Genes Mapping Approach) provides useful metrics to determine the completeness of assembly obtained. For this dataset the use of MK in the assembly generated a more complete assembly as measured by greater number of RMBT and CEGMA score. Merged single k-mer assemblies are generally smaller but consist of longer transcripts, suggesting an assembly consisting of fewer fragmented transcripts. We suggest that the use of a subset of reads during assembly allows the relatively rapid investigation of assembly characteristics and can guide the user to the most appropriate transcriptome for particular downstream use. Transcriptomes generated by the compared assembly methods and the final merged assembly are freely available for download at http://dx.doi.org/10.6084/m9.figshare.1032613.


Frontiers in Genetics | 2016

Assembly, Assessment, and Availability of De novo Generated Eukaryotic Transcriptomes

Joanna Moreton; Abril Izquierdo; Richard D. Emes

De novo assembly of a complete transcriptome without the need for a guiding reference genome is attractive, particularly where the cost and complexity of generating a eukaryote genome is prohibitive. The transcriptome should not however be seen as just a quick and cheap alternative to building a complete genome. Transcriptomics allows the understanding and comparison of spatial and temporal samples within an organism, and allows surveying of multiple individuals or closely related species. De novo assembly in theory allows the building of a complete transcriptome without any prior knowledge of the genome. It also allows the discovery of alternate splice forms of coding RNAs and also non-coding RNAs, which are often missed by proteomic approaches, or are incompletely annotated in genome studies. The limitations of the method are that the generation of a truly complete assembly is unlikely, and so we require some methods for the assessment of the quality and appropriateness of a generated transcriptome. Whilst no single consensus pipeline or tool is agreed as optimal, various algorithms, and easy to use software do exist making transcriptome generation a more common approach. With this expansion of data, questions still exist relating to how do we make these datasets fully discoverable, comparable and most useful to understand complex biological systems?


Open Biology | 2013

Pro-inflammatory cytokines can act as intracellular modulators of commensal bacterial virulence

Jafar Mahdavi; Pierre-Joseph Royer; Hong Sjölinder; Sheyda Azimi; Tim Self; Jeroen Stoof; Lee M. Wheldon; Kristoffer Brännström; Raymond Wilson; Joanna Moreton; James W. B. Moir; Carina Sihlbom; Thomas Borén; Ann-Beth Jonsson; Panos Soultanas; Dlawer A. A. Ala'Aldeen

Interactions between commensal pathogens and hosts are critical for disease development but the underlying mechanisms for switching between the commensal and virulent states are unknown. We show that the human pathogen Neisseria meningitidis, the leading cause of pyogenic meningitis, can modulate gene expression via uptake of host pro-inflammatory cytokines leading to increased virulence. This uptake is mediated by type IV pili (Tfp) and reliant on the PilT ATPase activity. Two Tfp subunits, PilE and PilQ, are identified as the ligands for TNF-α and IL-8 in a glycan-dependent manner, and their deletion results in decreased virulence and increased survival in a mouse model. We propose a novel mechanism by which pathogens use the twitching motility mode of the Tfp machinery for sensing and importing host elicitors, aligning with the inflamed environment and switching to the virulent state.


Genome Announcements | 2013

Complete Genome Sequence of Universal Bacteriophage Host Strain Campylobacter jejuni subsp. jejuni PT14

Kelly J. Brathwaite; Patcharin Siringan; Joanna Moreton; Ray Wilson; Ian F. Connerton

ABSTRACT Campylobacter jejuni strain PT14 is a clinical isolate previously used to propagate bacteriophages in the United Kingdom phage typing scheme. The strain has proven useful in the isolation of Campylobacter bacteriophages from several sources, and it functions as a model host in phage therapy experiments with poultry and poultry meat.


Virology | 2012

Characterisation of retroviruses in the horse genome and their transcriptional activity via transcriptome sequencing

Katherine Brown; Joanna Moreton; Sunir Malla; A. Aziz Aboobaker; Richard D. Emes; Rachael E. Tarlinton

The recently released draft horse genome is incompletely characterised in terms of its repetitive element profile. This paper presents characterisation of the endogenous retrovirus (ERVs) of the horse genome based on a data-mining strategy using murine leukaemia virus proteins as queries. 978 ERV gene sequences were identified. Sequences were identified from the gamma, epsilon and betaretrovirus genera. At least one full length gammaretroviral locus was identified, though the gammaretroviral sequences are very degenerate. Using these data the RNA expression of these ERVs were derived from RNA transcriptome data from a variety of equine tissues. Unlike the well studied human and murine ERVs there do not appear to be particular phylogenetic groups of equine ERVs that are more transcriptionally active. Using this novel approach provided a more technically feasible method to characterise ERV expression than previous studies.


PLOS ONE | 2016

Identification of Gene Modules Associated with Low Temperatures Response in Bambara Groundnut by Network-Based Analysis.

Venkata Suresh Bonthala; Katie Mayes; Joanna Moreton; Martin J. Blythe; Victoria J. Wright; Sean Tobias May; Festo Massawe; Sean Mayes; Jamie Twycross

Bambara groundnut (Vigna subterranea (L.) Verdc.) is an African legume and is a promising underutilized crop with good seed nutritional values. Low temperature stress in a number of African countries at night, such as Botswana, can effect the growth and development of bambara groundnut, leading to losses in potential crop yield. Therefore, in this study we developed a computational pipeline to identify and analyze the genes and gene modules associated with low temperature stress responses in bambara groundnut using the cross-species microarray technique (as bambara groundnut has no microarray chip) coupled with network-based analysis. Analyses of the bambara groundnut transcriptome using cross-species gene expression data resulted in the identification of 375 and 659 differentially expressed genes (p<0.01) under the sub-optimal (23°C) and very sub-optimal (18°C) temperatures, respectively, of which 110 genes are commonly shared between the two stress conditions. The construction of a Highest Reciprocal Rank-based gene co-expression network, followed by its partition using a Heuristic Cluster Chiseling Algorithm resulted in 6 and 7 gene modules in sub-optimal and very sub-optimal temperature stresses being identified, respectively. Modules of sub-optimal temperature stress are principally enriched with carbohydrate and lipid metabolic processes, while most of the modules of very sub-optimal temperature stress are significantly enriched with responses to stimuli and various metabolic processes. Several transcription factors (from MYB, NAC, WRKY, WHIRLY & GATA classes) that may regulate the downstream genes involved in response to stimulus in order for the plant to withstand very sub-optimal temperature stress were highlighted. The identified gene modules could be useful in breeding for low-temperature stress tolerant bambara groundnut varieties.


Plasmid | 2014

The complete plasmid sequences of Salmonella enterica serovar Typhimurium U288

Steven P.T. Hooton; Andrew R. Timms; Nicola J. Cummings; Joanna Moreton; Ray Wilson; Ian F. Connerton

Salmonella enterica Serovar Typhimurium U288 is an emerging pathogen of pigs. The strain contains three plasmids of diverse origin that encode traits that are of concern for food security and safety, these include antibiotic resistant determinants, an array of functions that can modify cell physiology and permit genetic mobility. At 148,711 bp, pSTU288-1 appears to be a hybrid plasmid containing a conglomerate of genes found in pSLT of S. Typhimurium LT2, coupled with a mosaic of horizontally-acquired elements. Class I integron containing gene cassettes conferring resistance against clinically important antibiotics and compounds are present in pSTU288-1. A curious feature of the plasmid involves the deletion of two genes encoded in the Salmonella plasmid virulence operon (spvR and spvA) following the insertion of a tnpA IS26-like element coupled to a blaTEM gene. The spv operon is considered to be a major plasmid-encoded Salmonella virulence factor that is essential for the intracellular lifecycle. The loss of the positive regulator SpvR may impact on the pathogenesis of S. Typhimurium U288. A second 11,067 bp plasmid designated pSTU288-2 contains further antibiotic resistance determinants, as well as replication and mobilization genes. Finally, a small 4675 bp plasmid pSTU288-3 was identified containing mobilization genes and a pleD-like G-G-D/E-E-F conserved domain protein that modulate intracellular levels of cyclic di-GMP, and are associated with motile to sessile transitions in growth.


Genome Announcements | 2013

Complete Genome Sequence of Salmonella enterica Serovar Typhimurium U288

Steven P.T. Hooton; Andrew R. Timms; Joanna Moreton; Ray Wilson; Ian F. Connerton

ABSTRACT Salmonella enterica serovar Typhimurium U288 has firmly established itself within the United Kingdom pig production industry. The prevalence of this highly pathogenic multidrug-resistant serovar at such a critical point in the food chain is therefore of great concern. To enhance our understanding of this microorganism, whole-genome and plasmid sequencing was performed.


PeerJ | 2014

Characterisation of the horse transcriptome from immunologically active tissues

Joanna Moreton; Sunir Malla; A. Aziz Aboobaker; Rachael E. Tarlinton; Richard D. Emes

The immune system of the horse has not been well studied, despite the fact that the horse displays several features such as sensitivity to bacterial lipopolysaccharide that make them in many ways a more suitable model of some human disorders than the current rodent models. The difficulty of working with large animal models has however limited characterisation of gene expression in the horse immune system with current annotations for the equine genome restricted to predictions from other mammals and the few described horse proteins. This paper outlines sequencing of 184 million transcriptome short reads from immunologically active tissues of three horses including the genome reference “Twilight”. In a comparison with the Ensembl horse genome annotation, we found 8,763 potentially novel isoforms.

Collaboration


Dive into the Joanna Moreton's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ray Wilson

University of Nottingham

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Raymond Wilson

University of Nottingham

View shared research outputs
Top Co-Authors

Avatar

Sunir Malla

University of Nottingham

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jeroen Stoof

University of Nottingham

View shared research outputs
Researchain Logo
Decentralizing Knowledge