Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Joanna Stanczyk is active.

Publication


Featured researches published by Joanna Stanczyk.


Arthritis & Rheumatism | 2008

Altered expression of MicroRNA in synovial fibroblasts and synovial tissue in rheumatoid arthritis

Joanna Stanczyk; Deena M. Leslie Pedrioli; Fabia Brentano; Olga Sánchez-Pernaute; Christoph Kolling; Michael Detmar; Diego Kyburz

OBJECTIVE MicroRNAs (miRNA) have recently emerged as a new class of modulators of gene expression. In this study we investigated the expression, regulation, and function of miR-155 and miR-146a in rheumatoid arthritis (RA) synovial fibroblasts (RASFs) and RA synovial tissue. METHODS Locked nucleic acid microarray was used to screen for differentially expressed miRNA in RASFs treated with tumor necrosis factor alpha (TNFalpha). TaqMan-based real-time polymerase chain reaction was applied to measure the levels of miR-155 and miR-146a. Enforced overexpression of miR-155 was used to investigate the function of miR-155 in RASFs. RESULTS Microarray analysis of miRNA expressed in RASFs treated with TNFalpha revealed a prominent up-regulation of miR-155. Constitutive expression of both miR-155 and miR-146a was higher in RASFs than in those from patients with osteoarthritis (OA), and expression of miR-155 could be further induced by TNFalpha, interleukin-1beta, lipopolysaccharide, poly(I-C), and bacterial lipoprotein. The expression of miR-155 in RA synovial tissue was higher than in OA synovial tissue. Enforced expression of miR-155 in RASFs was found to repress the levels of matrix metalloproteinase 3 (MMP-3) and reduce the induction of MMPs 3 and 1 by Toll-like receptor ligands and cytokines. Moreover, compared with monocytes from RA peripheral blood, RA synovial fluid monocytes displayed higher levels of miR-155. CONCLUSION This study provides the first description of increased expression of miRNA miR-155 and miR-146a in RA. Based on these findings, we postulate that the inflammatory milieu may alter miRNA expression profiles in resident cells of the rheumatoid joints. Considering the repressive effect of miR-155 on the expression of MMPs 3 and 1 in RASFs, we hypothesize that miR-155 may be involved in modulation of the destructive properties of RASFs.


Arthritis & Rheumatism | 2010

MicroRNA-29, a key regulator of collagen expression in systemic sclerosis.

Britta Maurer; Joanna Stanczyk; Astrid Jüngel; Alfiya Akhmetshina; Michelle Trenkmann; Matthias Brock; Otylia Kowal-Bielecka; Beat A. Michel; Jörg H. W. Distler; Oliver Distler

OBJECTIVE To investigate the role of microRNA (miRNA) as posttranscriptional regulators of profibrotic genes in systemic sclerosis (SSc). METHODS MicroRNA, which target collagens, were identified by in silico analysis. Expression of miRNA-29 (miR-29) was determined by TaqMan real-time polymerase chain reaction analysis of skin biopsy and fibroblast samples from SSc patients and healthy controls as well as in the mouse model of bleomycin-induced skin fibrosis. Cells were transfected with precursor miRNA (pre-miRNA)/anti-miRNA of miR-29 using Lipofectamine. Collagen gene expression was also studied in luciferase reporter gene assays. For stimulation, recombinant transforming growth factor beta (TGFbeta), platelet-derived growth factor B (PDGF-B), or interleukin-4 (IL-4) was used. The effects of inhibiting PDGF-B and TGFbeta signaling on the levels of miR-29 were studied in vitro and in the bleomycin model. RESULTS We found that miR-29a was strongly down-regulated in SSc fibroblasts and skin sections as compared with the healthy controls. Overexpression in SSc fibroblasts significantly decreased, and accordingly, knockdown in normal fibroblasts increased, the levels of messenger RNA and protein for type I and type III collagen. In the reporter gene assay, cotransfection with pre-miR-29a significantly decreased the relative luciferase activity, which suggests a direct regulation of collagen by miR-29a. TGFbeta, PDGF-B, or IL-4 reduced the levels of miR-29a in normal fibroblasts to those seen in SSc fibroblasts. Similar to human SSc, the expression of miR-29a was reduced in the bleomycin model of skin fibrosis. Inhibition of PDGF-B and TGFbeta pathways by treatment with imatinib restored the levels of miR-29a in vitro and in the bleomycin model in vivo. CONCLUSION These data add the posttranscriptional regulation of collagens by miR-29a as a novel aspect to the fibrogenesis of SSc and suggest miR-29a as a potential therapeutic target.


Arthritis & Rheumatism | 2011

Altered Expression of MicroRNA-203 in Rheumatoid Arthritis Synovial Fibroblasts and Its Role in Fibroblast Activation

Joanna Stanczyk; Caroline Ospelt; Emmanuel Karouzakis; Andrew Filer; Karim Raza; Christoph Kolling; Christopher D. Buckley; Paul P. Tak; Diego Kyburz

OBJECTIVE MicroRNA (miRNA) are recognized as important regulators of a variety of fundamental biologic processes. Previously, we described increased expression of miR-155 and miR-146a in rheumatoid arthritis (RA) and showed a repressive effect of miR-155 on matrix metalloproteinase (MMP) expression in RA synovial fibroblasts (RASFs). The present study was undertaken to examine alterations in expression of miR-203 in RASFs and analyze its role in fibroblast activation. METHODS Differentially expressed miRNA in RASFs versus osteoarthritis synovial fibroblasts (OASFs) were identified by real-time polymerase chain reaction (PCR)-based screening of 260 individual miRNA. Transfection of miR-203 precursor was used to analyze the function of miR-203 in RASFs. Levels of interleukin-6 (IL-6) and MMPs were measured by real-time PCR and enzyme-linked immunosorbent assay. RASFs were stimulated with IL-1β, tumor necrosis factor α (TNFα), lipopolysaccharide (LPS), and 5-azacytidine (5-azaC). Activity of IκB kinase 2 was inhibited with SC-514. RESULTS Expression of miR-203 was higher in RASFs than in OASFs or fibroblasts from healthy donors. Levels of miR-203 did not change upon stimulation with IL-1β, TNFα, or LPS; however, DNA demethylation with 5-azaC increased the expression of miR-203. Enforced expression of miR-203 led to significantly increased levels of MMP-1 and IL-6. Induction of IL-6 by miR-203 overexpression was inhibited by blocking of the NF-κB pathway. Basal expression levels of IL-6 correlated with basal expression levels of miR-203. CONCLUSION The current results demonstrate methylation-dependent regulation of miR-203 expression in RASFs. Importantly, they also show that elevated levels of miR-203 lead to increased secretion of MMP-1 and IL-6 via the NF-κB pathway and thereby contribute to the activated phenotype of synovial fibroblasts in RA.


Arthritis & Rheumatism | 2008

Overexpression of toll-like receptors 3 and 4 in synovial tissue from patients with early rheumatoid arthritis: Toll-like receptor expression in early and longstanding arthritis†

Caroline Ospelt; Fabia Brentano; Yvonne Rengel; Joanna Stanczyk; Christoph Kolling; Paul P. Tak; Diego Kyburz

OBJECTIVE To analyze the expression, regulation, and biologic relevance of Toll-like receptors (TLRs) 1-10 in synovial and skin fibroblasts and to determine the expression levels of TLRs 2, 3, and 4 in synovial tissues from patients with early rheumatoid arthritis (RA), longstanding RA, and osteoarthritis (OA). METHODS Expression of TLRs 1-10 in RA synovial fibroblasts (RASFs), OASFs, and skin fibroblasts was analyzed by real-time polymerase chain reaction (PCR). Fibroblasts were stimulated with tumor necrosis factor alpha, interleukin-1beta (IL-1beta), bacterial lipopeptide, poly(I-C), lipopolysaccharide, and flagellin. Production of IL-6 was determined by enzyme-linked immunosorbent assay and induction of TLRs 2-5, matrix metalloproteinases (MMPs) 3 and 13 messenger RNA by real-time PCR. Expression of TLRs 2-4 in synovial tissues was analyzed by immunohistochemistry. RESULTS Synovial fibroblasts expressed TLRs 1-6, but not TLRs 7-10. Among the expressed TLRs, TLR-3 and TLR-4 were the most abundant in synovial fibroblasts, and stimulation of synovial fibroblasts with the TLR-3 ligand poly(I-C) led to the most pronounced increase in IL-6, MMP-3, and MMP-13. In contrast, skin fibroblasts did not up-regulate MMP-3 or MMP-13 after stimulation with any of the tested stimuli. In synovial tissues from patients with early RA, TLR-3 and TLR-4 were highly expressed and were comparable to the levels of patients with longstanding RA. These expression levels were elevated as compared with those in OA. CONCLUSION Our findings of high expression of TLRs, particularly TLRs 3 and 4, at an early stage of RA and the reactivity of synovial fibroblasts in vitro to TLR ligands suggest that TLR signaling pathways resulting in persistent inflammation and joint destruction are activated early in the disease process.


Arthritis & Rheumatism | 2012

Down‐regulation of microRNA‐34a* in rheumatoid arthritis synovial fibroblasts promotes apoptosis resistance

Fabienne Niederer; Michelle Trenkmann; Caroline Ospelt; Emmanuel Karouzakis; Joanna Stanczyk; Christoph Kolling; Michael Detmar; Astrid Jüngel; Diego Kyburz

OBJECTIVE To investigate the expression and effect of the microRNA-34 (miR-34) family on apoptosis in rheumatoid arthritis synovial fibroblasts (RASFs). METHODS Expression of the miR-34 family in synovial fibroblasts with or without stimulation with Toll-like receptor (TLR) ligands, tumor necrosis factor α (TNFα), interleukin-1β (IL-1β), hypoxia, or 5-azacytidine was analyzed by real-time polymerase chain reaction (PCR). Promoter methylation was studied by combined bisulfite restriction analysis. The effects of overexpression and silencing of miR-34a and miR-34a* on apoptosis were analyzed by annexin V/propidium iodide staining. Production of X-linked inhibitor of apoptosis protein (XIAP) was assessed by real-time PCR and immunohistochemistry analysis. Reporter gene assay was used to study the signaling pathways of miR-34a*. RESULTS Basal expression levels of miR-34a* were found to be reduced in synovial fibroblasts from RA patients compared to osteoarthritis patients, whereas levels of miR-34a, miR-34b/b*, and miR-34c/c* did not differ. Neither TNFα, IL-1β, TLR ligands, nor hypoxia altered miR-34a* expression. However, we demonstrated that the promoter of miR-34a/34a* was methylated and showed that transcription of the miR-34a duplex was induced upon treatment with demethylating agents. Enforced expression of miR-34a* led to an increased rate of FasL- and TRAIL-mediated apoptosis in RASFs. Moreover, levels of miR-34a* were highly correlated with expression of XIAP, which was found to be up-regulated in RA synovial cells. Finally, we identified XIAP as a direct target of miR-34a*. CONCLUSION Our data provide evidence of a methylation-specific down-regulation of proapoptotic miR-34a* in RASFs. Decreased expression of miR- 34a* results in up-regulation of its direct target XIAP, thereby contributing to resistance of RASFs to apoptosis.


Annals of the Rheumatic Diseases | 2008

Abundant expression of the interleukin (IL)23 subunit p19, but low levels of bioactive IL23 in the rheumatoid synovium: differential expression and Toll-like receptor-(TLR) dependent regulation of the IL23 subunits, p19 and p40, in rheumatoid arthritis

Fabia Brentano; Caroline Ospelt; Joanna Stanczyk; Diego Kyburz

Objective: Interleukin (IL)23, composed of a p19 and a p40 subunit, is suggested to play key roles in rheumatoid arthritis (RA), dependent on the promotion and proliferation of IL17-producing T helper (Th)17 cells. However, previous studies on IL23 expression in human tissues were based on the p19 subunit only. We aimed to study the expression and regulation of IL23 subunits p19 and p40 in RA compared to patients with osteoarthritis (OA). Methods: The expression of p19 and p40 in synovial tissues was analysed by in situ hybridisation and immunohistochemistry. IL23 in RA and OA synovial fluids and sera was determined by ELISA. Toll-like receptor (TLR)-dependent induction of p19, p40 and bioactive IL23 was determined in RA synovial fibroblasts (RASF), monocytes and monocyte-derived dendritic cells (MDDCs) by real-time PCR and reverse transcriptase (RT)-PCR, Western blot and functional assays. Results: The p19 subunit was abundantly expressed in RA but not in OA synovial tissues. p19 was most prominently expressed by RASF in the synovial lining layer and at the site of invasion, but no heterodimeric IL23 was detected at these sites. Correspondingly, soluble IL23 was not detectable or found at very low levels in synovial fluids and sera of patients with RA. By in vitro experiments, we confirmed that TLR-activated RASF expressed p19 but not p40, in contrast to monocytes, which produced IL23 following TLR stimulation. Conclusion: The TLR-dependent induction of p19 but not p40 in RASF and the abundant expression of p19 along with the low or undetectable levels of IL23 in patients with RA provides strong evidence that p19 does not necessarily indicate the presence of IL23, as has been proposed to date.


Current Opinion in Rheumatology | 2008

Is there a future for small molecule drugs in the treatment of rheumatic diseases

Joanna Stanczyk; Caroline Ospelt

Purpose of reviewIn this review, we outline the landscape of recent developments regarding small molecule compounds for the treatment of inflammatory disorders by discussing drug candidates currently in the pipeline. We also stress the fact that novel techniques are available to evaluate the safety of new therapeutics at an early stage of development. Recent findingsRegulation of signal transduction has evolved into an important field of drug research, and small molecule inhibitors of a number of pathways are tested as new anti-inflammatory agents. For rheumatic diseases, specific Jak3 and Syk inhibitors are, so far, the most successful compounds due to their good efficacy, representing a significant advantage over p38 mitogen-activated protein kinase inhibitors. Additional benefit in the treatment of inflammatory diseases may be provided by targeting CD80, IL-12/IL-23, AP-1 transcription factor and receptors modulating cellular activation like chemokine receptors, Toll-like receptors and adenosine A3 receptor. SummaryThere is a big hope that novel small molecule drugs, which are rationally designed, based on scientific advancements and biotechnological improvements, will achieve or even exceed efficacy of protein drugs. Thereby, new therapeutic alternatives would be given, and chances for improved outcomes in the care of rheumatic patients provided.


Current Opinion in Rheumatology | 2006

Synovial cell activation.

Joanna Stanczyk; Caroline Ospelt

Purpose of reviewModern molecular biology offers a unique opportunity to gain a comprehensive picture of gene expression in a disease state. This review presents recent findings in the field of synovial fibroblast biology contributing to knowledge of the pathogenesis of rheumatoid arthritis. Recent findingsRecently it has become apparent that innate immune response pathways play a critical role in driving synovial activation and contribute significantly to the turnover of leukocytes in the synovial compartment. In addition, microparticles have been identified as a new class of potent mediators, broadening the known spectrum of cell-derived modulators in the joint. Numerous research groups gained new insights into detailed molecular mechanisms leading to the invasiveness of rheumatoid arthritis synovial fibroblasts, the disturbance in the regulation of apoptosis, and synovial cell–cell and cell–matrix interactions. SummaryThe key role of synovial fibroblasts in the pathogenesis of rheumatoid arthritis has been highlighted by the fact that these cells not only are the main executors of cartilage and bone destruction but also modulate numerous interactions in rheumatoid joints. Moreover, it has become evident that integration of a large body of information is indispensable to get a comprehensive outlook on synovial activation in the pathology of rheumatoid arthritis.


Arthritis & Rheumatism | 2007

Pre-B Cell Colony-Enhancing Factor/Visfatin, a New Marker of Inflammation in Rheumatoid Arthritis With Proinflammatory and Matrix-Degrading Activities

Fabia Brentano; Olivier Schorr; Caroline Ospelt; Joanna Stanczyk; Diego Kyburz


Arthritis & Rheumatism | 2007

Epigenetics in inflammatory rheumatic diseases

Lars C. Huber; Joanna Stanczyk; Astrid Jüngel

Collaboration


Dive into the Joanna Stanczyk's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michael Detmar

École Polytechnique Fédérale de Lausanne

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Paul P. Tak

University of Amsterdam

View shared research outputs
Researchain Logo
Decentralizing Knowledge