Joanna Szczepanowska
Nencki Institute of Experimental Biology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Joanna Szczepanowska.
Mechanisms of Ageing and Development | 2009
Malgorzata A. Sliwinska; Grazyna Mosieniak; Kamila Wolanin; Aneta Babik; Katarzyna Piwocka; Adriana Magalska; Joanna Szczepanowska; Jan Fronk; Ewa Sikora
Induction of senescence has been proposed as a possible in vivo tumor response to anticancer treatment. Senescent cancer cells are often polyploid, however, their route to polyploidy is poorly recognized (endoreduplication versus aberrant mitoses). We showed that after treatment of HCT116 cells with a low dose of doxorubicin most of them stopped proliferation as documented by SA-beta-galactosidase activity and the lack of Ki67 expression. Increased expression of other common senescence markers, p53, p21 and cyclin D1, was also observed. The cells became giant, polyploid and polymorphic, with multinucleated cells comprising a substantial fraction. The vast majority of the doxorubicin-treated cells did not enter mitoses, as evidenced by mitotic index analysis, as well as by the predominantly cytoplasmic localization of cyclin B1 and a lack of separation of multiplied centrosomes. This allowed us to conclude that doxorubicin-treated HCT116 cells underwent endoreduplication. However, the rare events of aberrant mitoses of polyploid cells observed by us led to aneuploid progeny as was documented by cytogenetic analysis of survivors. Thus, a senescence-inducing treatment of HCT116 cancer cells had a dual effect-it stopped the proliferation of the majority of the cells, but also led to the appearance of proliferating aneuploid ones.
Biochimica et Biophysica Acta | 2013
Hanna Janska; Malgorzata Kwasniak; Joanna Szczepanowska
This review focuses on organellar AAA/FtsH proteases, whose proteolytic and chaperone-like activity is a crucial component of the protein quality control systems of mitochondrial and chloroplast membranes. We compare the AAA/FtsH proteases from yeast, mammals and plants. The nature of the complexes formed by AAA/FtsH proteases and the current view on their involvement in degradation of non-native organellar proteins or assembly of membrane complexes are discussed. Additional functions of AAA proteases not directly connected with protein quality control found in yeast and mammals but not yet in plants are also described shortly. Following an overview of the molecular functions of the AAA/FtsH proteases we discuss physiological consequences of their inactivation in yeast, mammals and plants. The molecular basis of phenotypes associated with inactivation of the AAA/FtsH proteases is not fully understood yet, with the notable exception of those observed in m-AAA protease-deficient yeast cells, which are caused by impaired maturation of mitochondrial ribosomal protein. Finally, examples of cytosolic events affecting protein quality control in mitochondria and chloroplasts are given. This article is part of a Special Issue entitled: Protein Import and Quality Control in Mitochondria and Plastids.
International Journal of Cancer | 2006
Adriana Magalska; Malgorzata A. Sliwinska; Joanna Szczepanowska; Stefano Salvioli; Claudio Franceschi; Ewa Sikora
The term mitotic catastrophe has recently become widely used to describe a form of death affecting many cancer cells, which, because of severe DNA or mitotic spindle damage, are not able to bypass mitosis. We show here that cells of the HL‐60‐derived HCW‐2 line highly resistant to apoptosis, upon treatment with curcumin or vincristine, undergo mitotic catastrophe that is finalized by caspase 3 activation and oligonucleosomal DNA degradation. Curcumin is a natural dye, derived from Curcuma longa that has been shown to induce cell death in many cancer cells. Both treatments decrease cell proliferation and cell survival, arrest cells in G2/M phase of cell cycle and induce morphological changes characterized by cell enlargement and micronucleation. “Catastrophic” cells comprise a separate subpopulation with less than 4C DNA, as evidenced by flow and scanning cytometry. This subpopulation is MPM‐2 positive. Thymidine block increased the number of cell arrested in the G2/M phase of cell cycle and curcumin effectiveness as an inducer of mitotic catastrophe. Curcumin, but not vincristine, acts on HCW‐2 cells by inhibiting the expression of survivin, a modulator of cell division and apoptosis in cancer. Altogether our results show that apoptosis resistance can be overcome by inducing mitotic catastrophe in HCW‐2 cells.
Biochemical and Biophysical Research Communications | 2009
Marta Onopiuk; Wojciech Brutkowski; Katarzyna Wierzbicka; Sylwia Wojciechowska; Joanna Szczepanowska; Jan Fronk; Hanns Lochmüller; Dariusz C. Górecki; Krzysztof Zabłocki
Duchenne Muscular Dystrophy is characterized by severe defects in differentiated muscle fibers, including abnormal calcium homeostasis and impaired cellular energy metabolism. Here we demonstrate that myoblasts derived from dystrophic (mdx) mouse exhibit reduced oxygen consumption, increased mitochondrial membrane potential, enhanced reactive oxygen species formation, stimulated glycolysis but unaffected total cellular ATP content. Moreover, reduced amounts of specific subunits of the mitochondrial respiratory complexes and ATP-synthase as well as disorganized mitochondrial network were observed. Both the dystrophic and control myoblasts used were derived from a common inbred mouse strain and the only difference between them is a point mutation in the dystrophin-encoding gene, thus these data indicate that this mutation results in multiple phenotypic alterations demonstrating as early as in undifferentiated myoblasts. This finding sheds new light on the molecular mechanisms of Duchenne Muscular Dystrophy pathogenesis.
Biochimica et Biophysica Acta | 2012
Joanna Szczepanowska; Dominika Malinska; Mariusz R. Wieckowski; Jerzy Duszyński
This overview discusses the results of research on the effects of most frequent mtDNA point mutations on cellular bioenergetics. Thirteen proteins coded by mtDNA are crucial for oxidative phosphorylation, 11 of them constitute key components of the respiratory chain complexes I, III and IV and 2 of mitochondrial ATP synthase. Moreover, pathogenic point mutations in mitochondrial tRNAs and rRNAs generate abnormal synthesis of the mtDNA coded proteins. Thus, pathogenic point mutations in mtDNA usually disturb the level of key parameter of the oxidative phosphorylation, i.e. the electric potential on the inner mitochondrial membrane (Δψ), and in a consequence calcium signalling and mitochondrial dynamics in the cell. Mitochondrial generation of reactive oxygen species is also modified in the mutated cells. The results obtained with cultured cells and describing biochemical consequences of mtDNA point mutations are full of contradictions. Still they help elucidate the biochemical basis of pathologies and provide a valuable tool for finding remedies in the future. This article is part of a Special Issue entitled: 17th European Bioenergetics Conference (EBEC 2012).
The International Journal of Biochemistry & Cell Biology | 2011
Marta Wojewoda; Jerzy Duszyński; Joanna Szczepanowska
The importance of mitochondrial biogenesis in the pathogenesis of mitochondrial diseases has been widely recognised but little is known about it with regard to NARP (Neuropathy, Ataxia and Retinitis Pigmentosa) syndrome. Since such knowledge would contribute to the understanding of the pathogenesis of this disease, we designed a study to provide comprehensive overview of mitochondrial biogenesis in cybrid cells harboring NARP mutation (8993T>G). We also used Rho0 cells with the same nuclear background to show that distinct mtDNA defects lead to distinct cellular responses irrespective of nuclear genome. Mitochondrial biogenesis is regulated by mitochondria-to-nucleus (retrograde) communication which depends on intracellular signaling pathways sensitive to ROS. Since we previously found that selenite lowered ROS in NARP cybrids, we hypothesised that selenite could also modulate mitochondrial biogenesis in these cells. Although the mitochondrial mass was not changed in NARP cybrids, we showed the compensatory upregulation of respiratory chain subunits which prompted us to investigate the transcription factors that regulate their expression such as PGC-1α, NRFs, and TFAM. Selenite supplementation increased the level of NRF1 and nuclear accumulation of NRF2, but we did not detect any major changes in the levels of investigated respiratory chain proteins. These subtle changes in mitochondrial biogenesis in response to selenite treatment support the hypothesis that selenite could be considered as a potential therapeutic agent of NARP syndrome due to its antioxidant properties. Moreover, it could also be tested with regard to other mitochondrial disorders associated with ROS overproduction.
Biochimica et Biophysica Acta | 2010
Marta Wojewoda; Jerzy Duszyński; Joanna Szczepanowska
Mitochondrial diseases originate from mutations in mitochondrial or nuclear genes encoding for mitochondrial proteome. Neurogenic muscle weakness, ataxia and retinitis pigmentosa (NARP) syndrome is associated with the T8993G transversion in ATP6 gene which results in substitution at the very conservative site in the subunit 6 of mitochondrial ATP synthase. Defects in the mitochondrial respiratory chain and the ATPase are considered to be accompanied by changes in the generation of reactive oxygen species (ROS). This study aimed to elucidate effects of selenium on ROS and antioxidant system of NARP cybrid cells with 98% of T8993G mutation load. We found that selenium decreased ROS generation and increased the level and activity of antioxidant enzymes such as glutathione peroxidase (GPx) and thioredoxin reductase (TrxR). Therefore, we propose selenium to be a promising therapeutic agent not only in the case of NARP syndrome but also other diseases associated with mitochondrial dysfunctions and oxidative stress.
FEBS Letters | 2004
Joanna Szczepanowska; Krzysztof Zabłocki; Jerzy Duszyński
Effects of T8993G mutation in mitochondrial DNA (mtDNA), associated with neurogenical muscle weakness, ataxia and retinitis pigmentosa (NARP), on the cytoskeleton, mitochondrial network and calcium homeostasis in human osteosarcoma cells were investigated. In 98% NARP and ρ 0 (lacking mtDNA) cells, the organization of the mitochondrial network and actin cytoskeleton was disturbed. Capacitative calcium entry (CCE) was practically independent of mitochondrial energy status in osteosarcoma cell lines. The significantly slower Ca2+ influx rates observed in 98% NARP and ρ 0, in comparison to parental cells, indicates that proper actin cytoskeletal organization is important for CCE in these cells.
Archives of Biochemistry and Biophysics | 2014
Dorota Dymkowska; Beata Drabarek; Paulina Podszywalow-Bartnicka; Joanna Szczepanowska; Krzysztof Zabłocki
There is significant evidence for an involvement of reactive oxygen species (ROS) in the pathogenesis of diabetic vascular complications through many metabolic and structural derangements. However, despite the advanced knowledge on the crucial role of ROS in cardiovascular damage, their intracellular source in endothelial cells exposed to high concentrations of glucose has not been precisely defined. Moreover, the molecular mechanism of action of elevated glucose on mitochondria has not been fully elucidated. The main aim of this study was to describe changes in the mitochondrial metabolism of human umbilical vein endothelial cells (HUVECs) treated with high glucose concentrations and to indicate the actual source of ROS in these cells. HUVECs exposed to 30 mM glucose exhibited an increased content of vascular adhesive molecule-1 (VCAM-1) and an excessive ROS production. Faster oxygen consumption and increased abundance of selected respiratory complexes coexist with slightly declined mitochondrial membrane potential and substantially elevated amount of uncoupling protein-2 (UCP2). Inhibition of NADPH oxidase (NOX) and modification of mitochondrial ROS generation with a mitochondrial uncoupler or respiratory chain inhibitors allowed concluding that the major source of ROS in HUVECs exposed to hyperglycaemic conditions is NOX. The mitochondrial respiratory chain seems not to participate in this phenomenon.
The International Journal of Biochemistry & Cell Biology | 2012
Beata Drabarek; Dorota Dymkowska; Joanna Szczepanowska; Krzysztof Zabłocki
Mitochondrial response of EA.hy926 endothelial cells to tumour necrosis factor alpha (TNFα) was investigated. It was confirmed that TNFα stimulates reactive oxygen species (ROS) generation and increases intercellular adhesion molecule-1 (ICAM-1) level. These changes were paralleled by elevated oxygen consumption, slightly raised total mitochondrial mass and increased manganese superoxide dismutase (Mn-SOD) and uncoupling protein 2 (UCP2) content. They also correlated with a rise of mitochondrial transcription factor 1 (TFAM), nuclear respiratory factor-1 (NRF-1) and peroxisome proliferator-activated receptor-γ coactivator (PGC)-1α, which are involved in regulation of mitochondrial biogenesis and an elevated level of selected respiratory chain proteins. Thus, the apparent stimulatory effect of TNFα on mitochondrial metabolism probably reflects an increased amount of mitochondria rather than activation of biochemical processes per se, although the latter cannot be excluded definitely. These observations are similar to those described for cardiac muscle cells challenged with bacterial lipopolysaccharide (LPS), in which mitochondrial biogenesis was postulated. Stimulation of mitochondrial biogenesis could be a mechanism activated to prevent TNFα-induced cell death.