Joanne Keenan
Dublin City University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Joanne Keenan.
The New England Journal of Medicine | 2009
R R Holman; Andrew Farmer; Melanie J. Davies; Jonathan C. Levy; J L Darbyshire; Joanne Keenan; Sanjoy K. Paul
BACKGROUND Evidence supporting the addition of specific insulin regimens to oral therapy in patients with type 2 diabetes mellitus is limited. METHODS In this 3-year open-label, multicenter trial, we evaluated 708 patients who had suboptimal glycated hemoglobin levels while taking metformin and sulfonylurea therapy. Patients were randomly assigned to receive biphasic insulin aspart twice daily, prandial insulin aspart three times daily, or basal insulin detemir once daily (twice if required). Sulfonylurea therapy was replaced by a second type of insulin if hyperglycemia became unacceptable during the first year of the study or subsequently if glycated hemoglobin levels were more than 6.5%. Outcome measures were glycated hemoglobin levels, the proportion of patients with a glycated hemoglobin level of 6.5% or less, the rate of hypoglycemia, and weight gain. RESULTS Median glycated hemoglobin levels were similar for patients receiving biphasic (7.1%), prandial (6.8%), and basal (6.9%) insulin-based regimens (P=0.28). However, fewer patients had a level of 6.5% or less in the biphasic group (31.9%) than in the prandial group (44.7%, P=0.006) or in the basal group (43.2%, P=0.03), with 67.7%, 73.6%, and 81.6%, respectively, taking a second type of insulin (P=0.002). [corrected] Median rates of hypoglycemia per patient per year were lowest in the basal group (1.7), higher in the biphasic group (3.0), and highest in the prandial group (5.7) (P<0.001 for the overall comparison). The mean weight gain was higher in the prandial group than in either the biphasic group or the basal group. Other adverse event rates were similar in the three groups. CONCLUSIONS Patients who added a basal or prandial insulin-based regimen to oral therapy had better glycated hemoglobin control than patients who added a biphasic insulin-based regimen. Fewer hypoglycemic episodes and less weight gain occurred in patients adding basal insulin. (Current Controlled Trials number, ISRCTN51125379.)
Blood | 2014
Kerstin Pohl; Elaine Hayes; Joanne Keenan; Michael Henry; Paula Meleady; Kevin Molloy; Bakr Jundi; David A. Bergin; Cormac McCarthy; Oliver J. McElvaney; Michelle M. White; Martin Clynes; Emer P. Reeves; Noel G. McElvaney
Studies have endeavored to reconcile whether dysfunction of neutrophils in people with cystic fibrosis (CF) is a result of the genetic defect or is secondary due to infection and inflammation. In this study, we illustrate that disrupted function of the CF transmembrane conductance regulator (CFTR), such as that which occurs in patients with ∆F508 and/or G551D mutations, correlates with impaired degranulation of antimicrobial proteins. We demonstrate that CF blood neutrophils release less secondary and tertiary granule components compared with control cells and that activation of the low-molecular-mass GTP-binding protein Rab27a, involved in the regulation of granule trafficking, is defective. The mechanism leading to impaired degranulation involves altered ion homeostasis caused by defective CFTR function with increased cytosolic levels of chloride and sodium, yet decreased magnesium measured in CF neutrophils. Decreased magnesium concentration in vivo and in vitro resulted in significantly decreased levels of GTP-bound Rab27a. Treatment of G551D patients with the ion channel potentiator ivacaftor resulted in normalized neutrophil cytosolic ion levels and activation of Rab27a, thereby leading to increased degranulation and bacterial killing. Our results confirm that intrinsic alterations of circulating neutrophils from patients with CF are corrected by ivacaftor, thus illustrating additional clinical benefits for CFTR modulator therapy.
Proteomics | 2009
Joanne Keenan; Lisa Murphy; Michael Henry; Paula Meleady; Martin Clynes
Alterations in protein expression associated with adriamycin resistance in a panel of variants derived from the poorly differentiated squamous cell lung carcinoma DLKP were investigated using 2‐D DIGE. Of the 80 proteins identified as being differentially expressed, 32 correlated to adriamycin resistance. Twenty‐four proteins showed positive correlations with drug resistance, 11 correlated directly with increase in the resistance (including NDPK, RPA2, CCT2, HSP70 and Annexin A1) while 13 proteins (including HNRP K and H1, aldehyde dehydrogenase (ALDH), stomatin and CCT3) increased to a similar level in all drug‐resistant variants. Fewer proteins showed an inverse correlation with resistance; two (protein disulphide isomerase (PDI) and HSP70 variant 1) displayed a similar decrease in all variants and six (including prohibitin (PHB) and EIF5A) correlated inversely with resistance. Three proteins (EEF1D, Actin G1 and Annexin 1) correlated with the invasive status of these variants. Some expected targets of adriamycin action showed correlation with resistance including RPA2 (critical for DNA damage repair), while others proteins involved in protection from ROS production (such as GST, peroxiredoxins and thioredoxins) did not. The proteomic analysis revealed a large number of changes in protein expression that may contribute to a more apoptosis‐resistant state. Many of these changes could provide novel targets for overcoming resistance.
BMC Biotechnology | 2011
Paula Meleady; Padraig Doolan; Michael Henry; Niall Barron; Joanne Keenan; Finbar O'Sullivan; Colin Clarke; Patrick Gammell; Mark Melville; Mark Leonard; Martin Clynes
BackgroundThe ability of mammalian cell lines to sustain cell specific productivity (Qp) over the full duration of bioprocess culture is a highly desirable phenotype, but the molecular basis for sustainable productivity has not been previously investigated in detail. In order to identify proteins that may be associated with a sustained productivity phenotype, we have conducted a proteomic profiling analysis of two matched pairs of monoclonal antibody-producing Chinese hamster ovary (CHO) cell lines that differ in their ability to sustain productivity over a 10 day fed-batch culture.ResultsProteomic profiling of inherent differences between the two sets of comparators using 2D-DIGE (Difference Gel Electrophoresis) and LC-MS/MS resulted in the identification of 89 distinct differentially expressed proteins. Overlap comparisons between the two sets of cell line pairs identified 12 proteins (AKRIB8, ANXA1, ANXA4, EIF3I, G6PD, HSPA8, HSP90B1, HSPD1, NUDC, PGAM1, RUVBL1 and CNN3) that were differentially expressed in the same direction.ConclusionThese proteins may have an important role in sustaining high productivity of recombinant protein over the duration of a fed-batch bioprocess culture. It is possible that many of these proteins could be useful for future approaches to successfully manipulate or engineer CHO cells in order to sustain productivity of recombinant protein.
Cytotechnology | 2006
Joanne Keenan; Dermot Pearson; Martin Clynes
Early developments in serum-free media led to a variety of formulations in which components normally provided in serum and required for growth (insulin, transferrin, lipid supplements, trace elements) and poorly defined components (extracts, hydrolysates) were added to defined basal media. These additives were mostly animal-derived. Given recent concerns about TSEs (transmissible spongiform encephalopathies) and other adventitious agents, the drive in media formulations must be towards elimination of animal-origin materials while maintaining cell line productivity. The progress made towards removing animal-derived components and the use of recombinant proteins in serum-free media for mammalian cells is reviewed.
American Heart Journal | 2016
R R Holman; M A Bethel; Jyothis T. George; Harald Sourij; Zoë Doran; Joanne Keenan; Nardev S. Khurmi; Robert J. Mentz; Abderrahim Oulhaj; John B. Buse; Juliana C.N. Chan; Nayyar Iqbal; Sudeep Kundu; Aldo P. Maggioni; Steven P. Marso; Peter Öhman; Michael J. Pencina; Neil Poulter; Lisa Porter; Bernard Zinman; Adrian F. Hernandez
Exenatide once-weekly is an extended release formulation of exenatide, a glucagon-like peptide-1 receptor agonist, which can improve glycemic control, body weight, blood pressure, and lipid levels in patients with type 2 diabetes mellitus (T2DM). The EXenatide Study of Cardiovascular Event Lowering (EXSCEL) will compare the impact of adding exenatide once-weekly to usual care with usual care alone on major cardiovascular outcomes. EXSCEL is an academically led, phase III/IV, double-blind, pragmatic placebo-controlled, global trial conducted in 35 countries aiming to enrol 14,000 patients with T2DM and a broad range of cardiovascular risk over approximately 5 years. Participants will be randomized (1:1) to receive exenatide once-weekly 2 mg or matching placebo by subcutaneous injections. The trial will continue until 1,360 confirmed primary composite cardiovascular end points, defined as cardiovascular death, nonfatal myocardial infarction, or nonfatal stroke, have occurred. The primary efficacy hypothesis is that exenatide once-weekly is superior to usual care with respect to the primary composite cardiovascular end point. EXSCEL is powered to detect a 15% relative risk reduction in the exenatide once-weekly group, with 85% power and a 2-sided 5% alpha. The primary safety hypothesis is that exenatide once-weekly is noninferior to usual care with respect to the primary cardiovascular composite end point. Noninferiority will be concluded if the upper limit of the CI is <1.30. EXSCEL will assess whether exenatide once-weekly can reduce cardiovascular events in patients with T2DM with a broad range of cardiovascular risk. It will also provide long-term safety information on exenatide once-weekly in people with T2DM. ClinicalTrials.gov Identifier: NCT01144338.
The Prostate | 2012
Niall Barron; Joanne Keenan; Patrick Gammell; Vanesa G. Martinez; Alex Freeman; John R. W. Masters; Martin Clynes
Radical prostatectomy cures the majority of men with clinically localized disease, but up to 30% of men relapse with rising serum PSA levels. Stage, Gleason grade, and pre‐operative PSA levels are associated with outcome but do not accurately predict which individuals will relapse. MicroRNA (miRNA) levels are altered in cancer and are associated with progression of disease. The miR‐200 family has roles in prostate cancer.
Biochimica et Biophysica Acta | 2008
Lisa Murphy; Michael Henry; Paula Meleady; Martin Clynes; Joanne Keenan
Pulse selections on a chemotherapy naive squamous lung carcinoma cell line, SKMES-1, with clinically relevant concentrations of taxanes (taxol or taxotere) resulted in the development of a stable taxotere-resistant variant, SKMES-1-Taxotere and an unstable taxol-resistant variant, SKMES-1-Taxol. Both variants exhibited increased invasiveness in vitro. The unstable nature of SKMES-1-Taxol facilitated looking at factors involved in loss of taxol resistance and increased invasion. The taxotere and taxol-resistant cell lines were 5.9-fold and 12.5-fold resistant to taxotere and taxol respectively. Alterations in expression of/or point mutations in tubulin, the main target of taxanes, is a major mechanism or resistance. However, alterations in expression of beta tubulin were not consistent in the taxane-selected variants. Cross-resistance to adriamycin, vincristine and etoposide (VP-16) was consistent with overexpression of P-glycoprotein (P-gp). However, P-gp alone is not sufficient to confer the complete multiple drug resistance phenotype as all cell lines exhibited cross-resistance to 5-Fluorouracil (5-FU) and more than one mechanism has been linked to taxane resistance. There was no correlation between the fall of taxol resistance in SKMES-1-Taxol and P-gp expression indicating the loss in resistance to be independent of P-gp expression. Furthermore, resistance to the other drugs was not unstable in SKMES-1-Taxol suggesting some parallel mechanisms of resistance. Two-dimensional electrophoresis coupled with matrix assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectrometry was used to identify alterations in expression of specific proteins associated with taxane resistance. A large number of differentially regulated proteins were identified in the resistant and invasive variants affecting cellular processes including stress response, protein turnover and cytoskeleton proteins.
Cytotechnology | 2006
Joanne Keenan; Dermot Pearson; Lorraine O’Driscoll; Patrick Gammell; Martin Clynes
DeltaFerrinTM, a yeast-derived recombinant human transferrin produced by Delta Biotechnology Ltd. (Nottingham UK), was found to be a suitable replacement for holo human transferrin in serum-free culture media of the MDCK cell line (chosen because of its transferrin dependence) in short-term screening assays. Long-term subculture was achieved with DeltaFerrinTM supporting growth equivalent to that of holo human transferrin. DeltaFerrinTM and a selection of chemical iron chelators were found in short-term assays to be equivalent to holo human transferrin in supporting growth of MDCK, BHK-21-PPI-C16 and Vero-PPI. In long-term subcultures, however, only DeltaFerrinTM was found to support cell growth in a manner essentially equivalent to holo human transferrin in all three cell lines. For both BHK and Vero variants tested, recombinant preproinsulin production was unaltered by replacing holo human transferrin with DeltaFerrinTM. As such, this is the first report of a recombinant human transferrin produced under animal-free conditions that can act as a universal iron chelator for cells grown in serum-free media (SFM).
Toxicology in Vitro | 2008
Laura Breen; Lisa Murphy; Joanne Keenan; Martin Clynes
Using a selection process designed to reflect clinically relevant conditions, a panel of taxane-selected variants were developed to study further the mechanisms of resistance in lung cancer. Unlike continuous or pulse exposure to high concentrations of chemotherapeutic drugs which yield high resistance and often cross resistance, most variants developed here displayed low level resistance to the selecting drug with slight cross-resistance. Pulsing with taxol resulted in more highly resistant clones (up to 51.4-fold). Analysis of taxol and taxotere in the four major lung cancer cell types showed the taxanes to be more effective against NSCLC (with the exception of SKMES-taxane selected variants) than against the SCLC. Comparison of taxol and taxotere shows that taxol induces higher levels of resistance than taxotere. Further, in taxotere-selected cell lines, the cells are more resistant to taxol than taxotere, suggesting that taxotere may be a superior taxane from a clinical view. Taxol treatment resulted in increased cross-resistance to 5-FU in all classes of lung cancer except DMS-53. The high levels of Pgp in the DMS-53 and selected variant suggests this mechanism is not related to Pgp expression. Analysis of the Pgp and MRP-1 status by combination inhibitory assays and Western blotting showed no consistent relationship between expression of the membrane pumps Pgp or MRP-1 and resistance. However, where high level resistance was seen, the parent cell line expressed Pgp or MRP-1 and was accompanied by increased levels in the variants. Overall we found that the clinically relevant models used here are useful for investigating mechanisms of taxane resistance.