Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Paula Meleady is active.

Publication


Featured researches published by Paula Meleady.


Journal of Clinical Investigation | 2010

α-1 Antitrypsin regulates human neutrophil chemotaxis induced by soluble immune complexes and IL-8

David A. Bergin; Emer P. Reeves; Paula Meleady; Michael Henry; Oliver J. McElvaney; Tomás P. Carroll; Claire Condron; Sanjay H. Chotirmall; Martin Clynes; Shane J. O'Neill; Noel G. McElvaney

Hereditary deficiency of the protein α-1 antitrypsin (AAT) causes a chronic lung disease in humans that is characterized by excessive mobilization of neutrophils into the lung. However, the reason for the increased neutrophil burden has not been fully elucidated. In this study we have demonstrated using human neutrophils that serum AAT coordinates both CXCR1- and soluble immune complex (sIC) receptor-mediated chemotaxis by divergent pathways. We demonstrated that glycosylated AAT can bind to IL-8 (a ligand for CXCR1) and that AAT-IL-8 complex formation prevented IL-8 interaction with CXCR1. Second, AAT modulated neutrophil chemotaxis in response to sIC by controlling membrane expression of the glycosylphosphatidylinositol-anchored (GPI-anchored) Fc receptor FcγRIIIb. This process was mediated through inhibition of ADAM-17 enzymatic activity. Neutrophils isolated from clinically stable AAT-deficient patients were characterized by low membrane expression of FcγRIIIb and increased chemotaxis in response to IL-8 and sIC. Treatment of AAT-deficient individuals with AAT augmentation therapy resulted in increased AAT binding to IL-8, increased AAT binding to the neutrophil membrane, decreased FcγRIIIb release from the neutrophil membrane, and normalization of chemotaxis. These results provide new insight into the mechanism underlying the effect of AAT augmentation therapy in the pulmonary disease associated with AAT deficiency.


Journal of Biotechnology | 2011

Engineering CHO cell growth and recombinant protein productivity by overexpression of miR-7

Niall Barron; Niraj Kumar; Noelia Sanchez; Padraig Doolan; Colin Clarke; Paula Meleady; Finbarr O'Sullivan; Martin Clynes

The efficient production of recombinant proteins by Chinese Hamster Ovary (CHO) cells in modern bioprocesses is often augmented by the use of proliferation control strategies. The most common method is to shift the culture temperature from 37 °C to 28-33 °C though genetic approaches to achieving the same effect are also of interest. In this work we used qRT-PCR-based expression profiling using TLDA™ cards to identify miRNAs displaying differential expression 24h after temperature-shift (TS) from 37 °C to 31 °C. Six miRNAs were found to be significantly up-regulated (mir-219, mir-518d, mir-126, mir-30e, mir-489 and mir-345) and four down-regulated (mir-7, mir-320, mir-101 and mir-199). Furthermore, qRT-PCR analysis of miR-7 expression over a 6 day batch culture, with and without TS, demonstrated decreased expression over time in both cultures but to a significantly greater extent in cells shifted to a lower culture temperature. Unexpectedly, when miR-7 levels were increased transiently by transfection with miR-7 mimic in CHO-K1 cells, cell proliferation at 37 °C was effectively blocked over a 96 h culture period. On the other hand, transient inhibition of endogenous miR-7 levels using antagonists had no impact on cell growth. The exogenous overexpression of miR-7 also resulted in increased normalised (per cell) production at 37 °C, though the yield was lower than cells grown at reduced temperature. This is the first report demonstrating a functional impact of specific miRNA disregulation on CHO cell behavior in batch culture and provides some evidence of the potential which these molecules may have in terms of engineering targets in CHO production clones. Finally, we report the cloning and sequencing of the hamster-specific cgr-miR-7.


Journal of Proteomics | 2008

Analysis of the saliva proteome from patients with head and neck squamous cell carcinoma reveals differences in abundance levels of proteins associated with tumour progression and metastasis

Paul Dowling; Robert Wormald; Paula Meleady; Michael Henry; Aongus Curran; Martin Clynes

The objective of this study was to identify differentially expressed proteins in saliva from HNSCC patients compared to a control group. Saliva samples from eight individuals with non-malignant conditions of the head and neck region were employed as a control group and compared to saliva from eight patients with HNSCC using 2D DIGE analysis and subsequent mass spectrometry identification of candidate proteins. Beta fibrin (+2.77-fold), S100 calcium binding protein (+5.35-fold), transferrin (+3.37-fold), immunoglobulin heavy chain constant region gamma (+3.28) and cofilin-1 (+6.42) were all found to be significantly increased in the saliva from HNSCC samples compared to the control group whereas transthyretin (-2.92-fold) was significantly decreased. The increased abundance of one of the proteins identified (S100 calcium binding protein) was confirmed by immunoblot analysis. Many of these proteins are involved in tumour progression, metastasis and angiogenesis. The proximity of saliva to the developing tumour is undoubtedly a major factor in facilitating detection of these proteins and such a strategy may lead to the development of a panel of biomarkers useful for therapeutic monitoring and for early detection of HNSCC.


Biotechnology and Bioengineering | 2010

Microarray and proteomics expression profiling identifies several candidates, including the valosin-containing protein (VCP), involved in regulating high cellular growth rate in production CHO cell lines.

Padraig Doolan; Paula Meleady; Niall Barron; Michael Henry; Ross Gallagher; Patrick Gammell; Mark Melville; Martin Sinacore; Kevin McCarthy; Mark Leonard; Timothy S. Charlebois; Martin Clynes

A high rate of cell growth (µ) leading to rapid accumulation of viable biomass is a desirable phenotype during scale up operations and the early stages of production cultures. In order to identify genes and proteins that contribute to higher growth rates in Chinese hamster ovary (CHO) cells, a combined approach using microarray and proteomic expression profiling analysis was carried out on two matched pairs of CHO production cell lines that displayed either fast or slow growth rates. Statistical analysis of the microarray and proteomic data separately resulted in the identification of 118 gene transcripts and 58 proteins that were differentially expressed between the fast‐ and slow‐growing cells. Overlap comparison of both datasets identified a priority list of 21 candidates associated with a high growth rate phenotype in CHO. Functional analysis (by siRNA) of five of these candidates identified the valosin‐containing protein (VCP) as having a substantial impact on CHO cell growth and viability. Knockdown of HSPB1 and ENO1 also had an effect on cell growth (negative and positive, respectively). Further functional validation in CHO using both gene knockdown (siRNA) and overexpression (cDNA) confirmed that altered VCP expression impacted CHO cell proliferation, indicating that VCP and other genes and proteins identified here may play an important role in the regulation of CHO cell growth during log phase culture and are potential candidates for CHO cell line engineering strategies. Biotechnol. Bioeng. 2010; 106: 42–56.


European Journal of Cancer | 2001

Selection with melphalan or paclitaxel (Taxol) yields variants with different patterns of multidrug resistance, integrin expression and in vitro invasiveness

Y. Liang; Paula Meleady; I. Cleary; Susan McDonnell; Lisa Connolly; Martin Clynes

A melphalan-resistant variant (Roswell Park Memorial Institute (RPMI)-2650Ml) and a paclitaxel-resistant variant (RPMI-2650Tx) of the drug-sensitive human nasal carcinoma cell line, RPMI-2650, were established. The multidrug resistance (MDR) phenotype in the RPMI-2650Tx appeared to be P-glycoprotein (PgP)-mediated. Overexpression of multidrug resistant protein (MRP) family members was observed in the RPMI-2650Ml cells, which were also much more invasive in vitro than the parental cell line or the paclitaxel-resistant variant. Increased expression of alpha(2), alpha(5), alpha(6), beta(1) and beta(4) integrin subunits, decreased expression of alpha(4) integrin subunit, stronger adhesion to collagen type IV, laminin, fibronectin and matrigel, increased expression of MMP-2 and MMP-9 and significant motility compared with the parental cells were observed, along with a high invasiveness in the RPMI-2650Ml cells. Decreased expression of the alpha(2) integrin subunit, decreased attachment to collagen type IV, absence of cytokeratin 18 expression, no detectable expression of gelatin-degrading proteases and poor motility may be associated with the non-invasiveness of the RPMI-2650Tx variant. These results suggest that melphalan exposure can result in not only a MDR phenotype, but could also make cancer cells more invasive, whereas paclitaxel exposure resulted in MDR without increasing the in vitro invasiveness in the RPMI-2650 cells.


BMC Genomics | 2012

Integrated miRNA, mRNA and protein expression analysis reveals the role of post-transcriptional regulation in controlling CHO cell growth rate

Colin Clarke; Michael Henry; Padraig Doolan; Shane Kelly; Sinead Aherne; Noelia Sanchez; Paul S. Kelly; Paula Kinsella; Laura Breen; Stephen F. Madden; Lin Zhang; Mark Leonard; Martin Clynes; Paula Meleady; Niall Barron

BackgroundTo study the role of microRNA (miRNA) in the regulation of Chinese hamster ovary (CHO) cell growth, qPCR, microarray and quantitative LC-MS/MS analysis were utilised for simultaneous expression profiling of miRNA, mRNA and protein. The sample set under investigation consisted of clones with variable cellular growth rates derived from the same population. In addition to providing a systems level perspective on cell growth, the integration of multiple profiling datasets can facilitate the identification of non-seed miRNA targets, complement computational prediction tools and reduce false positive and false negative rates.Results51 miRNAs were associated with increased growth rate (35 miRNAs upregulated and 16 miRNAs downregulated). Gene ontology (GO) analysis of genes (n=432) and proteins (n=285) found to be differentially expressed (DE) identified biological processes driving proliferation including mRNA processing and translation. To investigate the influence of miRNA on these processes we combined the proteomic and transcriptomic data into two groups. The first set contained candidates where evidence of translational repression was observed (n=158). The second group was a mixture of proteins and mRNAs where evidence of translational repression was less clear (n=515). The TargetScan algorithm was utilised to predict potential targets within these two groups for anti-correlated DE miRNAs.ConclusionsThe evidence presented in this study indicates that biological processes such as mRNA processing and protein synthesis are correlated with growth rate in CHO cells. Through the integration of expression data from multiple levels of the biological system a number of proteins central to these processes including several hnRNPs and components of the ribosome were found to be post-transcriptionally regulated. We utilised the expression data in conjunction with in-silico tools to identify potential miRNA-mediated regulation of mRNA/proteins involved in CHO cell growth rate. These data have allowed us to prioritise candidates for cell engineering and/or biomarkers relevant to industrial cell culture. We also expect the knowledge gained from this study to be applicable to other fields investigating the role of miRNAs in mammalian cell growth.


Blood | 2014

A neutrophil intrinsic impairment affecting Rab27a and degranulation in cystic fibrosis is corrected by CFTR potentiator therapy

Kerstin Pohl; Elaine Hayes; Joanne Keenan; Michael Henry; Paula Meleady; Kevin Molloy; Bakr Jundi; David A. Bergin; Cormac McCarthy; Oliver J. McElvaney; Michelle M. White; Martin Clynes; Emer P. Reeves; Noel G. McElvaney

Studies have endeavored to reconcile whether dysfunction of neutrophils in people with cystic fibrosis (CF) is a result of the genetic defect or is secondary due to infection and inflammation. In this study, we illustrate that disrupted function of the CF transmembrane conductance regulator (CFTR), such as that which occurs in patients with ∆F508 and/or G551D mutations, correlates with impaired degranulation of antimicrobial proteins. We demonstrate that CF blood neutrophils release less secondary and tertiary granule components compared with control cells and that activation of the low-molecular-mass GTP-binding protein Rab27a, involved in the regulation of granule trafficking, is defective. The mechanism leading to impaired degranulation involves altered ion homeostasis caused by defective CFTR function with increased cytosolic levels of chloride and sodium, yet decreased magnesium measured in CF neutrophils. Decreased magnesium concentration in vivo and in vitro resulted in significantly decreased levels of GTP-bound Rab27a. Treatment of G551D patients with the ion channel potentiator ivacaftor resulted in normalized neutrophil cytosolic ion levels and activation of Rab27a, thereby leading to increased degranulation and bacterial killing. Our results confirm that intrinsic alterations of circulating neutrophils from patients with CF are corrected by ivacaftor, thus illustrating additional clinical benefits for CFTR modulator therapy.


Journal of Biotechnology | 2011

Large scale microarray profiling and coexpression network analysis of CHO cells identifies transcriptional modules associated with growth and productivity

Colin Clarke; Padraig Doolan; Niall Barron; Paula Meleady; Finbarr O'Sullivan; Patrick Gammell; Mark Melville; Mark Leonard; Martin Clynes

Weighted gene coexpression network analysis (WGCNA) was utilised to explore Chinese hamster ovary (CHO) cell transcriptome patterns associated with bioprocess relevant phenotypes. The dataset set used in this study consisted of 295 microarrays from 121 individual CHO cultures producing a range of biologics including monoclonal antibodies, fusion proteins and therapeutic factors; non-producing cell lines were also included. Samples were taken from a wide range of process scales and formats that varied in terms of seeding density, temperature, medium, feed medium, culture duration and product type. Cells were sampled for gene expression analysis at various stages of the culture and bioprocess-relevant characteristics including cell density, growth rate, viability, lactate, ammonium and cell specific productivity (Qp) were determined. WGCNA identified six distinct clusters of co-expressed genes, five of which were found to have associations with bioprocess variables. Two coexpression clusters were found to be associated with culture growth rate (1 positive and 1 negative). In addition, associations between a further three coexpression modules and Qp were observed (1 positive and 2 negative). Gene set enrichment analysis (GSEA) identified a number of significant biological processes within coexpressed gene clusters including cell cycle, protein secretion and vesicle transport. In summary, the approach presented in this study provides a novel perspective on the CHO cell transcriptome.


Journal of Biotechnology | 2011

Predicting cell-specific productivity from CHO gene expression.

Colin Clarke; Padraig Doolan; Niall Barron; Paula Meleady; Finbarr O'Sullivan; Patrick Gammell; Mark Melville; Mark Leonard; Martin Clynes

Improving the rate of recombinant protein production in Chinese hamster ovary (CHO) cells is an important consideration in controlling the cost of biopharmaceuticals. We present the first predictive model of productivity in CHO bioprocess culture based on gene expression profiles. The dataset used to construct the model consisted of transcriptomic data from 70 stationary phase, temperature-shifted CHO production cell line samples, for which the cell-specific productivity had been determined. These samples were utilised to investigate gene expression over a range of high to low monoclonal antibody and fc-fusion-producing CHO cell lines. We utilised a supervised regression algorithm, partial least squares (PLS) incorporating jackknife gene selection, to produce a model of cell-specific productivity (Qp) capable of predicting Qp to within 4.44 pg/cell/day root mean squared error in cross model validation (RMSE(CMV)). The final model, consisting of 287 genes, was capable of accurately predicting Qp in a further panel of 10 additional samples which were incorporated as an independent validation. Several of the genes constituting the model are linked with biological processes relevant to protein metabolism.


Proteomics | 2011

2-D DIGE analysis of the mitochondrial proteome from human skeletal muscle reveals time course-dependent remodelling in response to 14 consecutive days of endurance exercise training.

Brendan Egan; Paul Dowling; Paul L. O'Connor; Michael Henry; Paula Meleady; Juleen R. Zierath; Donal J. O'Gorman

Adaptation of skeletal muscle to repeated bouts of endurance exercise increases aerobic capacity and improves mitochondrial function. However, the adaptation of human skeletal muscle mitochondrial proteome to short‐term endurance exercise training has not been investigated. Eight sedentary males cycled for 60 min at 80% of peak oxygen consumption (VO2peak) each day for 14 consecutive days, resulting in an increase in VO2peak of 17.5±3.8% (p<0.01). Mitochondria‐enriched protein fractions from skeletal muscle biopsies taken from m. vastus lateralis at baseline, and on the morning following the 7th and 14th training sessions were subjected to 2‐D DIGE analysis with subsequent MS followed by database interrogation to identify the proteins of interest. Thirty‐one protein spots were differentially expressed after either 7 or 14 days of training (ANOVA, p<0.05). These proteins included subunits of the electron transport chain, enzymes of the tricarboxylic acid cycle, phosphotransfer enzymes, and regulatory factors in mitochondrial protein synthesis, oxygen transport, and antioxidant capacity. Several proteins demonstrated a time course‐dependent induction during training. Our results illustrate the phenomenon of skeletal muscle plasticity with the extensive remodelling of the mitochondrial proteome occurring after just 7 days of exercise training suggestive of enhanced capacity for adenosine triphosphate generation at a cellular level.

Collaboration


Dive into the Paula Meleady's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge