Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Joanne Outtrim is active.

Publication


Featured researches published by Joanne Outtrim.


Critical Care | 2008

Use of T2-weighted magnetic resonance imaging of the optic nerve sheath to detect raised intracranial pressure

Thomas Geeraerts; Virginia Newcombe; Jonathan P. Coles; Maria Giulia Abate; Iain E. Perkes; Peter J. Hutchinson; Joanne Outtrim; Doris A. Chatfield; David K. Menon

IntroductionThe dural sheath surrounding the optic nerve communicates with the subarachnoid space, and distends when intracranial pressure is elevated. Magnetic resonance imaging (MRI) is often performed in patients at risk for raised intracranial pressure (ICP) and can be used to measure precisely the diameter of optic nerve and its sheath. The objective of this study was to assess the relationship between optic nerve sheath diameter (ONSD), as measured using MRI, and ICP.MethodsWe conducted a retrospective blinded analysis of brain MRI images in a prospective cohort of 38 patients requiring ICP monitoring after severe traumatic brain injury (TBI), and in 36 healthy volunteers. ONSD was measured on T2-weighted turbo spin-echo fat-suppressed sequence obtained at 3 Tesla MRI. ICP was measured invasively during the MRI scan via a parenchymal sensor in the TBI patients.ResultsMeasurement of ONSD was possible in 95% of cases. The ONSD was significantly greater in TBI patients with raised ICP (>20 mmHg; 6.31 ± 0.50 mm, 19 measures) than in those with ICP of 20 mmHg or less (5.29 ± 0.48 mm, 26 measures; P < 0.0001) or in healthy volunteers (5.08 ± 0.52 mm; P < 0.0001). There was a significant relationship between ONSD and ICP (r = 0.71, P < 0.0001). Enlarged ONSD was a robust predictor of raised ICP (area under the receiver operating characteristic curve = 0.94), with a best cut-off of 5.82 mm, corresponding to a negative predictive value of 92%, and to a value of 100% when ONSD was less than 5.30 mm.ConclusionsWhen brain MRI is indicated, ONSD measurement on images obtained using routine sequences can provide a quantitative estimate of the likelihood of significant intracranial hypertension.


Critical Care Medicine | 2008

Effect of hyperoxia on regional oxygenation and metabolism after severe traumatic brain injury: preliminary findings.

Jurgens Nortje; Jonathan P. Coles; Ivan Timofeev; Tim D. Fryer; Franklin I. Aigbirhio; Peter Smielewski; Joanne Outtrim; Doris A. Chatfield; John D. Pickard; Peter J. Hutchinson; Arun Kumar Gupta; David K. Menon

Objective:To determine the effect of normobaric hyperoxia on cerebral metabolism in patients with severe traumatic brain injury. Design:Prospective clinical investigation. Setting:Neurosciences critical care unit of a university hospital. Patients:Eleven patients with severe traumatic brain injury. Interventions:Cerebral microdialysis, brain tissue oximetry (Pbo2), and oxygen-15 positron emission tomography (15O-PET) were undertaken at normoxia and repeated at hyperoxia (Fio2 increase of between 0.35 and 0.50). Measurements and Main Results:Established models were used to image cerebral blood flow, blood volume, oxygen metabolism, and oxygen extraction fraction. Physiology was characterized in a focal region of interest (surrounding the microdialysis catheter) and correlated with microdialysis and oximetry. Physiology was also characterized in a global region of interest (including the whole brain), and a physiologic region of interest (defined using a critical cerebral metabolic rate of oxygen threshold). Hyperoxia increased mean ± sd Pbo2 from 28 ± 21 mm Hg to 57 ± 47 mm Hg (p = .015). Microdialysate lactate and pyruvate were unchanged, but the lactate/pyruvate ratio showed a statistically significant reduction across the study population (34.1 ± 9.5 vs. 32.5 ± 9.0, p = .018). However, the magnitude of reduction was small, and its clinical significance doubtful. The focal region of interest and global 15O-PET variables were unchanged. “At-risk” tissue defined by the physiologic region of interest, however, showed a universal increase in cerebral metabolic rate of oxygen from a median (interquartile range) of 23 (22–25) &mgr;mol·100 mL−1·min−1 to 30 (28–36) &mgr;mol·100 mL−1·min−1 (p < .01). Conclusions:In severe traumatic brain injury, hyperoxia increases Pbo2 with a variable effect on lactate and lactate/pyruvate ratio. Microdialysis does not, however, predict the universal increases in cerebral metabolic rate of oxygen in at-risk tissue, which imply preferential metabolic benefit with hyperoxia.


JAMA Neurology | 2014

Amyloid Imaging With Carbon 11–Labeled Pittsburgh Compound B for Traumatic Brain Injury

Young T. Hong; Tonny Veenith; Deborah Dewar; Joanne Outtrim; Vaithianadan Mani; Claire Williams; Sally Pimlott; Peter J. Hutchinson; Adriana Tavares; Roberto Canales; Chester A. Mathis; William E. Klunk; Franklin I. Aigbirhio; Jonathan P. Coles; Jean-Claude Baron; John D. Pickard; Tim D. Fryer; William Stewart; David K. Menon

OBJECTIVES To image amyloid deposition in patients with traumatic brain injury (TBI) using carbon 11-labeled Pittsburgh Compound B ([11C]PiB) positron emission tomography (PET) and to validate these findings using tritium-labeled PiB ([3H]PiB) autoradiography and immunocytochemistry in autopsy-acquired tissue. DESIGN, SETTING, AND PARTICIPANTS In vivo PET at tertiary neuroscience referral center and ex vivo immunocytochemistry of autopsy-acquired brain tissue from a neuropathology archive. [11C]PiB PET was used to image amyloid deposition in 11 controls (median [range] age, 35 [24-60] years) and in 15 patients (median [range] age, 33 [21-50] years) between 1 and 361 days after a TBI. [3H]PiB autoradiography and immunocytochemistry for β-amyloid (Aβ) and β-amyloid precursor protein in brain tissue were obtained from separate cohorts of 16 patients (median [range] age, 46 [21-70] years) who died between 3 hours and 56 days after a TBI and 7 controls (median [range] age, 61 [29-71] years) who died of other causes. MAIN OUTCOMES AND MEASURES We quantified the [11C]PiB distribution volume ratio and standardized uptake value ratio in PET images. The distribution volume ratio and the standardized uptake value ratio were measured in cortical gray matter, white matter, and multiple cortical and white matter regions of interest, as well as in striatal and thalamic regions of interest. We examined [3H]PiB binding and Aβ and β-amyloid precursor protein immunocytochemistry in autopsy-acquired brain tissue. RESULTS Compared with the controls, the patients with TBI showed significantly increased [11C]PiB distribution volume ratios in cortical gray matter and the striatum (corrected P < .05 for both), but not in the thalamus or white matter. Increases in [11C]PiB distribution volume ratios in patients with TBI were seen across most cortical subregions, were replicated using comparisons of standardized uptake value ratios, and could not be accounted for by methodological confounders. Autoradiography revealed [3H]PiB binding in neocortical gray matter, in regions where amyloid deposition was demonstrated by immunocytochemistry; white matter showed Aβ and β-amyloid precursor protein by immunocytochemistry, but no [3H]PiB binding. No plaque-associated amyloid immunoreactivity or [3H]PiB binding was seen in cerebellar gray matter in autopsy-acquired tissue from either controls or patients with TBI, although 1 sample of cerebellar tissue from a patient with TBI showed amyloid angiopathy in meningeal vessels. CONCLUSIONS AND RELEVANCE [11C]PiB shows increased binding following TBI. The specificity of this binding is supported by neocortical [3H]PiB binding in regions of amyloid deposition in the postmortem tissue of patients with TBI. [11C]PiB PET could be valuable in imaging amyloid deposition following TBI.


Neurology | 2010

Altered functional connectivity in the motor network after traumatic brain injury

Maki Kasahara; David K. Menon; Claire H. Salmond; Joanne Outtrim; J.V. Taylor Tavares; T. A. Carpenter; John D. Pickard; Barbara J. Sahakian; Emmanuel A. Stamatakis

Background: A large proportion of survivors of traumatic brain injury (TBI) have persistent cognitive impairments, the profile of which does not always correspond to the size and location of injuries. One possible explanation could be that TBI-induced damage extends beyond obvious lesion sites to affect remote brain networks. We explored this hypothesis in the context of a simple and well-characterized network, the motor network. The aim of this cross-sectional study was to establish the residual integrity of the motor network as an important proof of principle of abnormal connectivity in TBI. Methods: fMRI data were obtained from 12 right-handed patients and 9 healthy controls while they performed the finger-thumb opposition task with the right hand. We used both conventional and psychophysiologic interaction (PPI) analyses to examine the integrity of functional connections from brain regions we found to be activated in the paradigm we used. Results: As expected, the analysis showed significant activations of the left primary motor cortex (M1), right cerebellum (Ce), and bilateral supplementary motor area (SMA) in controls. However, only the activation of M1 survived robust statistical thresholding in patients. In controls, the PPI analysis revealed that left M1, SMA, and right Ce positively interacted with the left frontal cortex and negatively interacted with the right supramarginal gyrus. In patients, we observed no negative interaction and reduced interhemispheric interactions from these seed regions. Conclusions: These observations suggest that patients display compromised activation and connectivity patterns during the finger-thumb opposition task, which may imply functional reorganization of motor networks following TBI.


Brain | 2011

Parcellating the neuroanatomical basis of impaired decision-making in traumatic brain injury

Virginia Newcombe; Joanne Outtrim; Doris A. Chatfield; Anne Manktelow; Peter J. Hutchinson; Jonathan P. Coles; Guy B. Williams; Barbara J. Sahakian; David K. Menon

Cognitive dysfunction is a devastating consequence of traumatic brain injury that affects the majority of those who survive with moderate-to-severe injury, and many patients with mild head injury. Disruption of key monoaminergic neurotransmitter systems, such as the dopaminergic system, may play a key role in the widespread cognitive dysfunction seen after traumatic axonal injury. Manifestations of injury to this system may include impaired decision-making and impulsivity. We used the Cambridge Gambling Task to characterize decision-making and risk-taking behaviour, outside of a learning context, in a cohort of 44 patients at least six months post-traumatic brain injury. These patients were found to have broadly intact processing of risk adjustment and probability judgement, and to bet similar amounts to controls. However, a patient preference for consistently early bets indicated a higher level of impulsiveness. These behavioural measures were compared with imaging findings on diffusion tensor magnetic resonance imaging. Performance in specific domains of the Cambridge Gambling Task correlated inversely and specifically with the severity of diffusion tensor imaging abnormalities in regions that have been implicated in these cognitive processes. Thus, impulsivity was associated with increased apparent diffusion coefficient bilaterally in the orbitofrontal gyrus, insula and caudate; abnormal risk adjustment with increased apparent diffusion coefficient in the right thalamus and dorsal striatum and left caudate; and impaired performance on rational choice with increased apparent diffusion coefficient in the bilateral dorsolateral prefrontal cortices, and the superior frontal gyri, right ventrolateral prefrontal cortex, the dorsal and ventral striatum, and left hippocampus. Importantly, performance in specific cognitive domains of the task did not correlate with diffusion tensor imaging abnormalities in areas not implicated in their performance. The ability to dissociate the location and extent of damage with performance on the various task components using diffusion tensor imaging allows important insights into the neuroanatomical basis of impulsivity following traumatic brain injury. The ability to detect such damage in vivo may have important implications for patient management, patient selection for trials, and to help understand complex neurocognitive pathways.


PLOS ONE | 2011

Mapping Traumatic Axonal Injury Using Diffusion Tensor Imaging: Correlations with Functional Outcome

Virginia Newcombe; Doris A. Chatfield; Joanne Outtrim; Sarah L. Vowler; Anne Manktelow; Justin J. Cross; Daniel Scoffings; Martin R. Coleman; Peter J. Hutchinson; Jonathan P. Coles; T. Adrian Carpenter; John D. Pickard; Guy B. Williams; David K. Menon

Background Traumatic brain injury is a major cause of morbidity and mortality worldwide. Ameliorating the neurocognitive and physical deficits that accompany traumatic brain injury would be of substantial benefit, but the mechanisms that underlie them are poorly characterized. This study aimed to use diffusion tensor imaging to relate clinical outcome to the burden of white matter injury. Methodology/Principal Findings Sixty-eight patients, categorized by the Glasgow Outcome Score, underwent magnetic resonance imaging at a median of 11.8 months (range 6.6 months to 3.7 years) years post injury. Control data were obtained from 36 age-matched healthy volunteers. Mean fractional anisotropy, apparent diffusion coefficient (ADC), and eigenvalues were obtained for regions of interest commonly affected in traumatic brain injury. In a subset of patients where conventional magnetic resonance imaging was completely normal, diffusion tensor imaging was able to detect clear abnormalities. Significant trends of increasing ADC with worse outcome were noted in all regions of interest. In the white matter regions of interest worse clinical outcome corresponded with significant trends of decreasing fractional anisotropy. Conclusions/Significance This study found that clinical outcome was related to the burden of white matter injury, quantified by diffusivity parameters late after traumatic brain injury. These differences were seen even in patients with the best outcomes and patients in whom conventional magnetic resonance imaging was normal, suggesting that diffusion tensor imaging can detect subtle injury missed by other techniques. An improved in vivo understanding of the pathology of traumatic brain injury, including its distribution and extent, may enhance outcome evaluation and help to provide a mechanistic basis for deficits that remain unexplained by other approaches.


Brain Injury | 2011

Traumatic brain injury alters the functional brain network mediating working memory.

Maki Kasahara; David K. Menon; Claire H. Salmond; Joanne Outtrim; Joana Taylor Tavares; T. Adrian Carpenter; John D. Pickard; Barbara J. Sahakian; Emmanuel A. Stamatakis

Primary objective: Investigation of the impact of traumatic brain injury (TBI) on the functional brain network that mediates working memory function. Research design: Functional magnetic resonance imaging (fMRI) during an n-back working memory task in nine chronic-stage patients with TBI and nine age-matched healthy controls. In addition to classical analyses investigating regional activity, the authors examined functional connectivity of the brain regions critical to working memory performance using psychophysiological interaction (PPI) analyses. Main outcomes and results: Patients with TBI made a greater percentage of errors than controls at high working memory load conditions. The fMRI data showed that the activation of the left inferior parietal gyrus (LIPG) was significantly reduced, whereas the activation of the right inferior frontal gyrus (RIFG) was significantly increased in patients compared with controls. Task performance accuracy was significantly associated with the activation of the LIPG in controls and the activation of the RIFG in patients. PPI analyses on fMRI data further suggested that the functional connectivity between the RIFG and LIPG was compromised in patients. Conclusion: The abnormal functional connectivity between LIPG and RIFG may underlie the observed working memory deficits and abnormal brain activation pattern in patients.


Journal of Cerebral Blood Flow and Metabolism | 2013

Microstructural basis of contusion expansion in traumatic brain injury: insights from diffusion tensor imaging

Virginia Newcombe; Guy B. Williams; Joanne Outtrim; Doris A. Chatfield; M Gulia Abate; Thomas Geeraerts; Anne Manktelow; Hywel Room; Leela Mariappen; Peter J. Hutchinson; Jonathan P. Coles; David K. Menon

Traumatic brain injury (TBI) is often exacerbated by events that lead to secondary brain injury, and represent potentially modifiable causes of mortality and morbidity. Diffusion tensor imaging was used to characterize tissue at-risk in a group of 35 patients scanned at a median of 50 hours after injury. Injury progression was assessed in a subset of 16 patients with two scans. All contusions within the first few days of injury showed a core of restricted diffusion, surrounded by an area of raised apparent diffusion coefficient (ADC). In addition to these two well-defined regions, a thinner rim of reduced ADC was observed surrounding the region of increased ADC in 91% of patients scanned within the first 3 days after injury. In patients who underwent serial imaging, the rim of ADC hypointensity was subsumed into the high ADC region as the contusion enlarged. Overall contusion enlargement tended to be more frequent with early lesions, but its extent was unrelated to the time of initial imaging, initial contusion size, or the presence of hemostatic abnormalities. This rim of hypointensity may characterize a region of microvascular failure resulting in cytotoxic edema, and may represent a ‘traumatic penumbra’ which may be rescued by effective therapy.


JAMA Neurology | 2016

Pathophysiologic Mechanisms of Cerebral Ischemia and Diffusion Hypoxia in Traumatic Brain Injury.

Tonny Veenith; Eleanor L. Carter; Thomas Geeraerts; Julia Grossac; Virginia Newcombe; Joanne Outtrim; Gloria S Gee; Victoria Lupson; Robert Smith; Franklin I. Aigbirhio; Tim D. Fryer; Young T. Hong; David K. Menon; Jonathan P. Coles

IMPORTANCE Combined oxygen 15-labeled positron emission tomography (15O PET) and brain tissue oximetry have demonstrated increased oxygen diffusion gradients in hypoxic regions after traumatic brain injury (TBI). These data are consistent with microvascular ischemia and are supported by pathologic studies showing widespread microvascular collapse, perivascular edema, and microthrombosis associated with selective neuronal loss. Fluorine 18-labeled fluoromisonidazole ([18F]FMISO), a PET tracer that undergoes irreversible selective bioreduction within hypoxic cells, could confirm these findings. OBJECTIVE To combine [18F]FMISO and 15O PET to demonstrate the relative burden, distribution, and physiologic signatures of conventional macrovascular and microvascular ischemia in early TBI. DESIGN, SETTING, AND PARTICIPANTS This case-control study included 10 patients who underwent [18F]FMISO and 15O PET within 1 to 8 days of severe or moderate TBI. Two cohorts of 10 healthy volunteers underwent [18F]FMISO or 15O PET. The study was performed at the Wolfson Brain Imaging Centre of Addenbrookes Hospital. Cerebral blood flow, cerebral blood volume, cerebral oxygen metabolism (CMRO2), oxygen extraction fraction, and brain tissue oximetry were measured in patients during [18F]FMISO and 15O PET imaging. Similar data were obtained from control cohorts. Data were collected from November 23, 2007, to May 22, 2012, and analyzed from December 3, 2012, to January 6, 2016. MAIN OUTCOMES AND MEASURES Estimated ischemic brain volume (IBV) and hypoxic brain volume (HBV) and a comparison of their spatial distribution and physiologic signatures. RESULTS The 10 patients with TBI (9 men and 1 woman) had a median age of 59 (range, 30-68) years; the 2 control cohorts (8 men and 2 women each) had median ages of 53 (range, 41-76) and 45 (range, 29-59) years. Compared with controls, patients with TBI had a higher median IBV (56 [range, 9-281] vs 1 [range, 0-11] mL; P < .001) and a higher median HBV (29 [range, 0-106] vs 9 [range, 1-24] mL; P = .02). Although both pathophysiologic tissue classes were present within injured and normal appearing brains, their spatial distributions were poorly matched. When compared with tissue within the IBV compartment, the HBV compartment showed similar median cerebral blood flow (17 [range, 11-40] vs 14 [range, 6-22] mL/100 mL/min), cerebral blood volume (2.4 [range, 1.6- 4.2] vs 3.9 [range, 3.4-4.8] mL/100 mL), and CMRO2 (44 [range, 27-67] vs 71 [range, 34-88] μmol/100 mL/min) but a lower oxygen extraction fraction (38% [range, 29%-50%] vs 89% [range, 75%-100%]; P < .001), and more frequently showed CMRO2 values consistent with irreversible injury. Comparison with brain tissue oximetry monitoring suggested that the threshold for increased [18F]FMISO trapping is probably 15 mm Hg or lower. CONCLUSIONS AND RELEVANCE Tissue hypoxia after TBI is not confined to regions with structural abnormality and can occur in the absence of conventional macrovascular ischemia. This physiologic signature is consistent with microvascular ischemia and is a target for novel neuroprotective strategies.


PLOS ONE | 2013

Inter subject variability and reproducibility of diffusion tensor imaging within and between different imaging sessions.

Tonny Veenith; Eleanor L. Carter; Julia Grossac; Virginia Newcombe; Joanne Outtrim; Victoria Lupson; Guy B. Williams; David K. Menon; Jonathan P. Coles

The aim of these studies was to provide reference data on intersubject variability and reproducibility of diffusion tensor imaging. Healthy volunteers underwent imaging on two occasions using the same 3T Siemens Verio magnetic resonance scanner. At each session two identical diffusion tensor sequences were obtained along with standard structural imaging. Fractional anisotropy, apparent diffusion coefficient, axial and radial diffusivity maps were created and regions of interest applied in normalised space. The baseline data from all 26 volunteers were used to calculate the intersubject variability, while within session and between session reproducibility were calculated from all the available data. The reproducibility of measurements were used to calculate the overall and within session 95% prediction interval for zero change. The within and between session reproducibility data were lower than the values for intersubject variability, and were different across the brain. The regional mean (range) coefficient of variation figures for within session reproducibility were 2.1 (0.9–5.5%), 1.2 (0.4–3.9%), 1.2 (0.4–3.8%) and 1.8 (0.4–4.3%) for fractional anisotropy, apparent diffusion coefficient, axial and radial diffusivity, and were lower than between session reproducibility measurements (2.4 (1.1–5.9%), 1.9 (0.7–5.7%), 1.7 (0.7–4.7%) and 2.4 (0.9–5.8%); p<0.001). The calculated overall and within session 95% prediction intervals for zero change were similar. This study provides additional reference data concerning intersubject variability and reproducibility of diffusion tensor imaging conducted within the same imaging session and different imaging sessions. These data can be utilised in interventional studies to quantify change within a single imaging session, or to assess the significance of change in longitudinal studies of brain injury and disease.

Collaboration


Dive into the Joanne Outtrim's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge