Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where João Ramalho-Carvalho is active.

Publication


Featured researches published by João Ramalho-Carvalho.


Genes, Chromosomes and Cancer | 2012

FLI1 is a novel ETS transcription factor involved in gene fusions in prostate cancer.

Paula Paulo; João D. Barros-Silva; Franclim R. Ribeiro; João Ramalho-Carvalho; Carmen Jerónimo; Rui Henrique; Guro E. Lind; Rolf I. Skotheim; Ragnhild A. Lothe; Manuel R. Teixeira

To characterize the pattern of ETS rearrangements and to uncover novel ETS fusion genes, we analyzed 200 prostate carcinomas (PCa) with TaqMan low‐density arrays (TLDAs), followed by selective analyses with fluorescence in situ hybridization (FISH), RT‐PCR, and sequencing. Besides confirming the recurrent presence of ERG, ETV1, ETV4, and ETV5 rearrangements, we here report FLI1 as the fifth ETS transcription factor involved in fusion genes in prostate cancer. Outlier expression of the FLI1 gene was detected by TLDAs in one PCa that showed relative overexpression of FLI1 exons 4:5 as compared with FLI1 exons 2:3. A structural rearrangement was found using FISH probes flanking the FLI1 gene and RT‐PCR and sequencing analyses showed fusion of SLC45A3 exon 1 with FLI1 exon 3. Interestingly, we found four cases with two different ETS rearrangements in the index tumor, thus revealing intratumor genetic heterogeneity. Correlation analysis with clinico‐pathological data showed association of ERG rearrangements with locally advanced disease (pT3, P = 0.007) and MYC overexpression (P = 0.001), and association of ETV1 rearrangements with PTEN downregulation (P = 0.015). We report that FLI1 is a novel ETS transcription factor involved in gene fusions in prostate cancer and that intratumor genetic heterogeneity of ETS rearrangements can occasionally be found in index primary tumors.


Clinical Epigenetics | 2015

MicroRNA-375 plays a dual role in prostate carcinogenesis

Pedro Costa-Pinheiro; João Ramalho-Carvalho; Filipa Vieira; Jorge Torres-Ferreira; Jorge Oliveira; Céline S. Gonçalves; Bruno M. Costa; Rui Henrique; Carmen Jerónimo

BackgroundProstate cancer (PCa), a highly incident and heterogeneous malignancy, mostly affects men from developed countries. Increased knowledge of the biological mechanisms underlying PCa onset and progression are critical for improved clinical management. MicroRNAs (miRNAs) deregulation is common in human cancers, and understanding how it impacts in PCa is of major importance. MiRNAs are mostly downregulated in cancer, although some are overexpressed, playing a critical role in tumor initiation and progression. We aimed to identify miRNAs overexpressed in PCa and subsequently determine its impact in tumorigenesis.ResultsMicroRNA expression profiling in primary PCa and morphological normal prostate (MNPT) tissues identified 17 miRNAs significantly overexpressed in PCa. Expression of three miRNAs, not previously associated with PCa, was subsequently assessed in large independent sets of primary tumors, in which miR-182 and miR-375 were validated, but not miR-32. Significantly higher expression levels of miR-375 were depicted in patients with higher Gleason score and more advanced pathological stage, as well as with regional lymph nodes metastases. Forced expression of miR-375 in PC-3 cells, which display the lowest miR-375 levels among PCa cell lines, increased apoptosis and reduced invasion ability and cell viability. Intriguingly, in 22Rv1 cells, which displayed the highest miR-375 expression, knockdown experiments also attenuated the malignant phenotype. Gene ontology analysis implicated miR-375 in several key pathways deregulated in PCa, including cell cycle and cell differentiation. Moreover, CCND2 was identified as putative miR-375 target in PCa, confirmed by luciferase assay.ConclusionsA dual role for miR-375 in prostate cancer progression is suggested, highlighting the importance of cellular context on microRNA targeting.


Endocrine-related Cancer | 2013

Deregulated expression of selected histone methylases and demethylases in prostate carcinoma.

Filipa Vieira; Pedro Costa-Pinheiro; João Ramalho-Carvalho; Andreia Pereira; Francisco Menezes; Luís Antunes; Isa Carneiro; Jorge Oliveira; Rui Henrique; Carmen Jerónimo

Prostate cancer (PCa), a leading cause of cancer-related morbidity and mortality, arises through the acquisition of genetic and epigenetic alterations. Deregulation of histone methyltransferases (HMTs) or demethylases (HDMs) has been associated with PCa development and progression. However, the precise influence of altered HMTs or HDMs expression and respective histone marks in PCa onset and progression remains largely unknown. To clarify the role of HMTs and HDMs in prostate carcinogenesis, expression levels of 37 HMTs and 20 HDMs were assessed in normal prostate and PCa tissue samples by RT-qPCR. SMYD3, SUV39H2, PRMT6, KDM5A, and KDM6A were upregulated, whereas KMT2A-E (MLL1-5) and KDM4B were downregulated in PCa, compared with normal prostate tissues. Remarkably, PRMT6 was the histone modifier that best discriminated normal from tumorous tissue samples. Interestingly, EZH2 and SMYD3 expression levels significantly correlated with less differentiated and more aggressive tumors. Remarkably, SMYD3 expression levels were of independent prognostic value for the prediction of disease-specific survival of PCa patients with clinically localized disease submitted to radical prostatectomy. We concluded that expression profiling of HMTs and HDMs, especially SMYD3, might be of clinical usefulness for the assessment of PCa patients and assist in pre-therapeutic decision-making.


PLOS ONE | 2011

Cysteine-Rich Secretory Protein-3 (CRISP3) Is Strongly Up-Regulated in Prostate Carcinomas with the TMPRSS2-ERG Fusion Gene

Franclim R. Ribeiro; Paula Paulo; Vera L. Costa; João D. Barros-Silva; João Ramalho-Carvalho; Carmen Jerónimo; Rui Henrique; Guro E. Lind; Rolf I. Skotheim; Ragnhild A. Lothe; Manuel R. Teixeira

A large percentage of prostate cancers harbor TMPRSS2-ERG gene fusions, leading to aberrant overexpression of the transcription factor ERG. The target genes deregulated by this rearrangement, however, remain mostly unknown. To address this subject we performed genome-wide mRNA expression analysis on 6 non-malignant prostate samples and 24 prostate carcinomas with (n = 16) and without (n = 8) TMPRSS2-ERG fusion as determined by FISH. The top-most differentially expressed genes and their associations with ERG over-expression were technically validated by quantitative real-time PCR and biologically validated in an independent series of 200 prostate carcinomas. Several genes encoding metabolic enzymes or extracellular/transmembrane proteins involved in cell adhesion, matrix remodeling and signal transduction pathways were found to be co-expressed with ERG. Within those significantly over-expressed in fusion-positive carcinomas, CRISP3 showed more than a 50-fold increase when compared to fusion-negative carcinomas, whose expression levels were in turn similar to that of non-malignant samples. In the independent validation series, ERG and CRISP3 mRNA levels were strongly correlated (r(s) = 0.65, p<0.001) and both were associated with pT3 disease staging. Furthermore, immunohistochemistry results showed CRISP3 protein overexpression in 63% of the carcinomas and chromatin immunoprecipitation with an anti-ERG antibody showed that CRISP3 is a direct target of the transcription factor ERG. We conclude that ERG rearrangement is associated with significant expression alterations in genes involved in critical cellular pathways that define a subset of locally advanced PCa. In particular, we show that CRISP3 is a direct target of ERG that is strongly overexpressed in PCa with the TMPRSS2-ERG fusion gene.


PLOS ONE | 2013

Altered expression of MGMT in high-grade gliomas results from the combined effect of epigenetic and genetic aberrations.

João Ramalho-Carvalho; Malini Pires; Susana Lisboa; Inês Graça; Patrícia Rocha; João D. Barros-Silva; Joana Savva-Bordalo; Joaquina Maurício; Mário Resende; Manuel R. Teixeira; Mrinalini Honavar; Rui Henrique; Carmen Jerónimo

MGMT downregulation in high-grade gliomas (HGG) has been mostly attributed to aberrant promoter methylation and is associated with increased sensitivity to alkylating agent-based chemotherapy. However, HGG harboring 10q deletions also benefit from treatment with alkylating agents. Because the MGMT gene is mapped at 10q26, we hypothesized that both epigenetic and genetic alterations might affect its expression and predict response to chemotherapy. To test this hypothesis, promoter methylation and mRNA levels of MGMT were determined by quantitative methylation-specific PCR (qMSP) or methylation-specific multiplex ligation dependent probe amplification (MS-MLPA) and quantitative RT-PCR, respectively, in a retrospective series of 61 HGG. MGMT/chromosome 10 copy number variations were determined by FISH or MS-MLPA analysis. Molecular findings were correlated with clinical parameters to assess their predictive value. Overall, MGMT methylation ratios assessed by qMSP and MS-MLPA were inversely correlated with mRNA expression levels (best coefficient value obtained with MS-MLPA). By FISH analysis in 68.3% of the cases there was loss of 10q26.1 and in 15% of the cases polysomy was demonstrated; the latter displayed the highest levels of transcript. When genetic and epigenetic data were combined, cases with MGMT promoter methylation and MGMT loss depicted the lowest transcript levels, although an impact in response to alkylating agent chemotherapy was not apparent. Cooperation between epigenetic (promoter methylation) and genetic (monosomy, locus deletion) changes affecting MGMT in HGG is required for effective MGMT silencing. Hence, evaluation of copy number alterations might add relevant prognostic and predictive information concerning response to alkylating agent-based chemotherapy.


Breast Cancer Research and Treatment | 2011

High RASSF1A promoter methylation levels are predictive of poor prognosis in fine-needle aspirate washings of breast cancer lesions.

Ana Teresa Martins; Paula Monteiro; João Ramalho-Carvalho; Vera L. Costa; Mário Dinis-Ribeiro; Conceição Leal; Rui Henrique; Carmen Jerónimo

Previously, we reported that the accuracy of cytological diagnosis of breast lesions could be augmented through the quantitative assessment of DNA methylation of fine-needle aspirate (FNA) washings. Herein, we aimed at the evaluation of the prognostic value of quantitative promoter methylation at three gene loci (APC, CCND2, and RASSF1A) in a large series of FNA washings from breast lesions. Methylation levels of three gene promoters were assessed by quantitative methylation-specific PCR in bisulfite-modified DNA from 211 FNA washings, comprising 178 carcinomas and 33 benign lesions, both histopathologically confirmed. Receiver operator characteristic (ROC) curve analysis was used to determine the diagnostic performance of the gene panel in distinguishing cancer from non-cancerous lesions. Relevant clinicopathologic data and time to progression and/or death from breast cancer were correlated with methylation findings. Log-rank test and Cox-regression model identified independent predictors of prognosis. APC, CCND2, and RASSF1A methylation levels differed significantly between malignant and benign lesions. ROC curve analysis confirmed the diagnostic performance of the gene panel. In univariate analysis, stage was significantly associated with overall, disease-specific and disease-free survival, whereas tumor grade was associated with disease-specific and disease-free survival. Remarkably, RASSF1A methylation was significantly and independently associated with worse disease-free survival in the final multivariate analysis. We confirmed that quantitative gene promoter methylation augments the diagnostic performance of cytopathology. Importantly, and in addition to standard clinicopathologic parameters, RASSF1A high-methylation levels are independent predictors of worse outcome in breast cancer. Thus, epigenetic biomarkers provide valuable tools for breast cancer patient management.


Current Pharmaceutical Design | 2014

Anti-tumoral effect of the non-nucleoside DNMT inhibitor RG108 in human prostate cancer cells.

Inês Graça; Elsa Joana Sousa; Tiago Baptista; Mafalda Almeida; João Ramalho-Carvalho; Carlos M. Palmeira; Rui Henrique; Carmen Jerónimo

BACKGROUND Current therapeutic strategies for advanced prostate cancer (PCa) are largely ineffective. Because aberrant DNA methylation associated with inappropriate gene-silencing is a common feature of PCa, DNA methylation inhibitors might constitute an alternative therapy. In this study we aimed to evaluate the anti-cancer properties of RG108, a novel non-nucleoside inhibitor of DNA methyltransferases (DNMT), in PCa cell lines. METHODS The anti-tumoral impact of RG108 in LNCaP, 22Rv1, DU145 and PC-3 cell lines was assessed through standard cell viability, apoptosis and cell cycle assays. Likewise, DNMT activity, DNMT1 expression and global levels of DNA methylation were evaluated in the same cell lines. The effectiveness of DNA demethylation was further assessed through the determination of promoter methylation and transcript levels of GSTP1, APC and RAR-β2, by quantitative methylation-specific PCR and RT-PCR, respectively. RESULTS RG108 led to a significant dose and time dependent growth inhibition and apoptosis induction in LNCaP, 22Rv1 and DU145. LNCaP and 22Rv1 also displayed decreased DNMT activity, DNMT1 expression and global DNA methylation. Interestingly, chronic treatment with RG108 significantly decreased GSTP1, APC and RAR-β2 promoter hypermethylation levels, although mRNA reexpression was only attained for GSTP1 and APC. CONCLUSIONS RG108 is an effective tumor growth suppressor in most PCa cell lines tested. This effect is likely mediated by reversion of aberrant DNA methylation affecting cancer related-genes epigenetically silenced in PCa. However, additional mechanism might underlie the anti-tumor effects of RG108. In vivo studies are now mandatory to confirm these promising results and evaluate the potential of this compound for PCa therapy.


Molecular Cancer | 2017

MiR-193b promoter methylation accurately detects prostate cancer in urine sediments and miR-34b/c or miR-129-2 promoter methylation define subsets of clinically aggressive tumors

Jorge Torres-Ferreira; João Ramalho-Carvalho; Antonio Gomez; Francisco Menezes; R. Freitas; Jorge Oliveira; Luís Antunes; Maria José Bento; Manel Esteller; Rui Henrique; Carmen Jerónimo

BackgroundContemporary challenges of prostate cancer (PCa) include overdiagnosis and overtreatment, entailing the need for novel clinical tools to improve risk stratification and therapy selection. PCa diagnosis and prognostication might be perfected using epigenetic biomarkers, among which aberrant DNA methylation of microRNA promoters has not been systematically explored. Herein, we identified aberrantly methylated microRNAs promoters in PCa and assessed its diagnostic and prognostic biomarker potential.MethodsUsing HumanMethylation450 BeadChip-based analysis differentially methylated CpGs in microRNA promoters were identified. Promoter methylation of six microRNAs (miR-34b/c, miR-129-2, miR-152, miR-193b, miR-663a and miR-1258) was analyzed by qMSP in three sets (180 prostatectomies, 95 urine sediments and 74 prostate biopsies). Biomarkers’ diagnostic (validity estimates) and prognostic [disease-free (DFS) and disease-specific survival (DSS)] performance was assessed.ResultsSignificantly higher promoter methylation levels in PCa were confirmed for six candidate microRNAs. Except for miR-152, all displayed AUC values higher than 0.90, with miR-1258 and miR-193b disclosing the best performance (AUC = 0.99 and AUC = 0.96, respectively). In urine samples, miR-193b showed the best performance (91.6% sensitivity, 95.7% specificity, AUC = 0.96). Moreover, higher miR-129-2 independently predicted for shorter DSS and miR−34b/c methylation levels independently predicted for shorter DFS and DSS.ConclusionsQuantitative miR-193b, miR-129-2 and miR-34b/c promoter methylation might be clinically useful PCa biomarkers for non-invasive detection/diagnosis and prognostication, both in tissue and urine samples.


BMC Cancer | 2010

Promoter methylation and large intragenic rearrangements of DPYD are not implicated in severe toxicity to 5-fluorouracil-based chemotherapy in gastrointestinal cancer patients

Joana Savva-Bordalo; João Ramalho-Carvalho; Manuela Pinheiro; Vera L. Costa; Ângelo Rodrigues; Paula Dias; Isabel Veiga; Manuela Machado; Manuel R. Teixeira; Rui Henrique; Carmen Jerónimo

BackgroundSevere toxicity to 5-fluorouracil (5-FU) based chemotherapy in gastrointestinal cancer has been associated with constitutional genetic alterations of the dihydropyrimidine dehydrogenase gene (DPYD).MethodsIn this study, we evaluated DPYD promoter methylation through quantitative methylation-specific PCR and screened DPYD for large intragenic rearrangements in peripheral blood from 45 patients with gastrointestinal cancers who developed severe 5-FU toxicity. DPYD promoter methylation was also assessed in tumor tissue from 29 patientsResultsTwo cases with the IVS14+1G > A exon 14 skipping mutation (c.1905+1G > A), and one case carrying the 1845 G > T missense mutation (c.1845G > T) in the DPYD gene were identified. However, DPYD promoter methylation and large DPYD intragenic rearrangements were absent in all cases analyzed.ConclusionsOur results indicate that DPYD promoter methylation and large intragenic rearrangements do not contribute significantly to the development of 5-FU severe toxicity in gastrointestinal cancer patients, supporting the need for additional studies on the mechanisms underlying genetic susceptibility to severe 5-FU toxicity.


Journal of Cellular and Molecular Medicine | 2014

Epigenetic regulation of EFEMP1 in prostate cancer: biological relevance and clinical potential

Mafalda Almeida; Vera L. Costa; Natália R. Costa; João Ramalho-Carvalho; Tiago Baptista; Franclim R. Ribeiro; Paula Paulo; Manuel R. Teixeira; Jorge Oliveira; Ragnhild A. Lothe; Guro E. Lind; Rui Henrique; Carmen Jerónimo

Epigenetic alterations are common in prostate cancer (PCa) and seem to contribute decisively to its initiation and progression. Moreover, aberrant promoter methylation is a promising biomarker for non‐invasive screening. Herein, we sought to characterize EFEMP1 as biomarker for PCa, unveiling its biological relevance in prostate carcinogenesis. Microarray analyses of treated PCa cell lines and primary tissues enabled the selection of differentially methylated genes, among which EFEMP1 was further validated by MSP and bisulfite sequencing. Assessment of biomarker performance was accomplished by qMSP. Expression analysis of EFEMP1 and characterization of histone marks were performed in tissue samples and cancer cell lines to determine the impact of epigenetic mechanisms on EFEMP1 transcriptional regulation. Phenotypic assays, using transfected cell lines, permitted the evaluation of EFEMP1s role in PCa development. EFEMP1 methylation assay discriminated PCa from normal prostate tissue (NPT; P < 0.001, Kruskall–Wallis test) and renal and bladder cancers (96% sensitivity and 98% specificity). EFEMP1 transcription levels inversely correlated with promoter methylation and histone deacetylation, suggesting that both epigenetic mechanisms are involved in gene regulation. Phenotypic assays showed that EFEMP1 de novo expression reduces malignant phenotype of PCa cells. EFEMP1 promoter methylation is prevalent in PCa and accurately discriminates PCa from non‐cancerous prostate tissues and other urological neoplasms. This epigenetic alteration occurs early in prostate carcinogenesis and, in association with histone deacetylation, progressively leads to gene down‐regulation, fostering cell proliferation, invasion and evasion of apoptosis.

Collaboration


Dive into the João Ramalho-Carvalho's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Franclim R. Ribeiro

Instituto Português de Oncologia Francisco Gentil

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Inês Graça

Imperial College London

View shared research outputs
Researchain Logo
Decentralizing Knowledge