Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where João T. Barata is active.

Publication


Featured researches published by João T. Barata.


Journal of Clinical Investigation | 2008

PTEN posttranslational inactivation and hyperactivation of the PI3K/Akt pathway sustain primary T cell leukemia viability

Ana Silva; J. Andrés Yunes; Bruno A. Cardoso; Leila R. Martins; Patrícia Y. Jotta; Miguel Abecasis; Alexandre E. Nowill; Nick R. Leslie; Angelo A. Cardoso; João T. Barata

Mutations in the phosphatase and tensin homolog (PTEN) gene leading to PTEN protein deletion and subsequent activation of the PI3K/Akt signaling pathway are common in cancer. Here we show that PTEN inactivation in human T cell acute lymphoblastic leukemia (T-ALL) cells is not always synonymous with PTEN gene lesions and diminished protein expression. Samples taken from patients with T-ALL at the time of diagnosis very frequently showed constitutive hyperactivation of the PI3K/Akt pathway. In contrast to immortalized cell lines, most primary T-ALL cells did not harbor PTEN gene alterations, displayed normal PTEN mRNA levels, and expressed higher PTEN protein levels than normal T cell precursors. However, PTEN overexpression was associated with decreased PTEN lipid phosphatase activity, resulting from casein kinase 2 (CK2) overexpression and hyperactivation. In addition, T-ALL cells had constitutively high levels of ROS, which can also downmodulate PTEN activity. Accordingly, both CK2 inhibitors and ROS scavengers restored PTEN activity and impaired PI3K/Akt signaling in T-ALL cells. Strikingly, inhibition of PI3K and/or CK2 promoted T-ALL cell death without affecting normal T cell precursors. Overall, our data indicate that T-ALL cells inactivate PTEN mostly in a nondeletional, posttranslational manner. Pharmacological manipulation of these mechanisms may open new avenues for T-ALL treatment.


Nature Genetics | 2011

Oncogenic IL7R gain-of-function mutations in childhood T-cell acute lymphoblastic leukemia.

Priscila Pini Zenatti; Daniel Ribeiro; Wenqing Li; Linda Zuurbier; Milene Costa da Silva; Maddalena Paganin; Julia Tritapoe; Julie A. Hixon; André Bortolini Silveira; Bruno A. Cardoso; Leonor M. Sarmento; Nádia C. Correia; María L. Toribio; Joerg Kobarg; Martin A. Horstmann; Rob Pieters; Silvia Regina Brandalise; Adolfo A. Ferrando; Jules P.P. Meijerink; Scott K. Durum; J. Andrés Yunes; João T. Barata

Interleukin 7 (IL-7) and its receptor, formed by IL-7Rα (encoded by IL7R) and γc, are essential for normal T-cell development and homeostasis. Here we show that IL7R is an oncogene mutated in T-cell acute lymphoblastic leukemia (T-ALL). We find that 9% of individuals with T-ALL have somatic gain-of-function IL7R exon 6 mutations. In most cases, these IL7R mutations introduce an unpaired cysteine in the extracellular juxtamembrane-transmembrane region and promote de novo formation of intermolecular disulfide bonds between mutant IL-7Rα subunits, thereby driving constitutive signaling via JAK1 and independently of IL-7, γc or JAK3. IL7R mutations induce a gene expression profile partially resembling that provoked by IL-7 and are enriched in the T-ALL subgroup comprising TLX3 rearranged and HOXA deregulated cases. Notably, IL7R mutations promote cell transformation and tumor formation. Overall, our findings indicate that IL7R mutational activation is involved in human T-cell leukemogenesis, paving the way for therapeutic targeting of IL-7R–mediated signaling in T-ALL.


Journal of Experimental Medicine | 2004

Activation of PI3K Is Indispensable for Interleukin 7-mediated Viability, Proliferation, Glucose Use, and Growth of T Cell Acute Lymphoblastic Leukemia Cells

João T. Barata; Ana Silva; Joana G. Brandao; Lee M. Nadler; Angelo A. Cardoso; Vassiliki A. Boussiotis

Interleukin (IL)-7 is essential for normal T cell development. Previously, we have shown that IL-7 increases viability and proliferation of T cell acute lymphoblastic leukemia (T-ALL) cells by up-regulating Bcl-2 and down-regulating the cyclin-dependent kinase inhibitor p27kip1. Here, we examined the signaling pathways via which IL-7 mediates these effects. We investigated mitogen-activated protein kinase (MEK)–extracellular signal-regulated kinase (Erk) and phosphatidylinositol-3-kinase (PI3K)–Akt (protein kinase B) pathways, which have active roles in T cell expansion and have been implicated in tumorigenesis. IL-7 induced activation of the MEK–Erk pathway in T-ALL cells; however, inhibition of the MEK–Erk pathway by the use of the cell-permeable inhibitor PD98059, did not affect IL-7–mediated viability or cell cycle progression of leukemic cells. IL-7 induced PI3K-dependent phosphorylation of Akt and its downstream targets GSK-3, FOXO1, and FOXO3a. PI3K activation was mandatory for IL-7–mediated Bcl-2 up-regulation, p27kip1 down-regulation, Rb hyperphosphorylation, and consequent viability and cell cycle progression of T-ALL cells. PI3K signaling was also required for cell size increase, up-regulation of CD71, expression of the glucose transporter Glut1, uptake of glucose, and maintenance of mitochondrial integrity. Our results implicate PI3K as a major effector of IL-7–induced viability, metabolic activation, growth and proliferation of T-ALL cells, and suggest that PI3K and its downstream effectors may represent molecular targets for therapeutic intervention in T-ALL.


PLOS ONE | 2010

Low Doses of Ionizing Radiation Promote Tumor Growth and Metastasis by Enhancing Angiogenesis

Inês Vala; Leila R. Martins; Natsuko Imaizumi; Raquel J. Nunes; José Rino; François Kuonen; Lara Carvalho; Curzio Rüegg; Isabel Monteiro Grillo; João T. Barata; Marc Mareel; Susana Constantino Rosa Santos

Radiotherapy is a widely used treatment option in cancer. However, recent evidence suggests that doses of ionizing radiation (IR) delivered inside the tumor target volume, during fractionated radiotherapy, can promote tumor invasion and metastasis. Furthermore, the tissues that surround the tumor area are also exposed to low doses of IR that are lower than those delivered inside the tumor mass, because external radiotherapy is delivered to the tumor through multiple radiation beams, in order to prevent damage of organs at risk. The biological effects of these low doses of IR on the healthy tissue surrounding the tumor area, and in particular on the vasculature remain largely to be determined. We found that doses of IR lower or equal to 0.8 Gy enhance endothelial cell migration without impinging on cell proliferation or survival. Moreover, we show that low-dose IR induces a rapid phosphorylation of several endothelial cell proteins, including the Vascular Endothelial Growth Factor (VEGF) Receptor-2 and induces VEGF production in hypoxia mimicking conditions. By activating the VEGF Receptor-2, low-dose IR enhances endothelial cell migration and prevents endothelial cell death promoted by an anti-angiogenic drug, bevacizumab. In addition, we observed that low-dose IR accelerates embryonic angiogenic sprouting during zebrafish development and promotes adult angiogenesis during zebrafish fin regeneration and in the murine Matrigel assay. Using murine experimental models of leukemia and orthotopic breast cancer, we show that low-dose IR promotes tumor growth and metastasis and that these effects were prevented by the administration of a VEGF receptor-tyrosine kinase inhibitor immediately before IR exposure. These findings demonstrate a new mechanism to the understanding of the potential pro-metastatic effect of IR and may provide a new rationale basis to the improvement of current radiotherapy protocols.


Blood | 2010

The MHC class Ib protein ULBP1 is a nonredundant determinant of leukemia/lymphoma susceptibility to γδ T-cell cytotoxicity

Telma Lança; Daniel V. Correia; Catarina Moita; Helena Raquel; Ana Neves-Costa; Cristina Ferreira; José S. Ramalho; João T. Barata; Luis F. Moita; Anita Q. Gomes; Bruno Silva-Santos

On the path to successful immunotherapy of hematopoietic tumors, gammadelta T cells offer great promise because of their human leukocyte antigen (HLA)-unrestricted targeting of a wide variety of leukemias/lymphomas. However, the molecular mechanisms underlying lymphoma recognition by gammadelta T cells remain unclear. Here we show that the expression levels of UL16-binding protein 1 (ULBP1) determine lymphoma susceptibility to gammadelta T cell-mediated cytolysis. Consistent with this, blockade of NKG2D, the receptor for ULBP1 expressed on all Vgamma9(+) T cells, significantly inhibits lymphoma cell killing. Specific loss-of-function studies demonstrate that the role of ULBP1 is nonredundant, highlighting a thus far unique physiologic relevance for tumor recognition by gammadelta T cells. Importantly, we observed a very wide spectrum of ULBP1 expression levels in primary biopsies obtained from lymphoma and leukemia patients. We suggest this will impact on the responsiveness to gammadelta T cell-based immunotherapy, and therefore propose ULBP1 to be used as a leukemia/lymphoma biomarker in upcoming clinical trials.


Leukemia | 2010

Negative prognostic impact of PTEN mutation in pediatric T-cell acute lymphoblastic leukemia

Patrícia Y. Jotta; M A Ganazza; Antônia Rita de Cássia da Silva; M B Viana; M.J. da Silva; L J G Zambaldi; João T. Barata; Silvia Regina Brandalise; José Andrés Yunes

Negative prognostic impact of PTEN mutation in pediatric T-cell acute lymphoblastic leukemia


Cancer Research | 2011

IL-7 Contributes to the Progression of Human T-cell Acute Lymphoblastic Leukemias

Ana Silva; Angelo Brunelli Albertoni Laranjeira; Leila R. Martins; Bruno A. Cardoso; Jocelyne Demengeot; J. Andrés Yunes; Benedict Seddon; João T. Barata

The importance of microenvironmental factors for driving progression in leukemia has been debated. Previous evidence has pointed to interleukin-7 (IL-7), a fundamental cytokine to normal T-cell development and homeostasis, as an important determinant of the viability and proliferation of T-cell acute lymphoblastic leukemia (T-ALL) cells in vitro. In this study, we report that IL-7 is also a critical determinant of T-ALL progression. T-ALL cell lines and primary T-ALL samples initiated leukemia more slowly when engrafted to immunocompromised Rag2(-/-)IL2rg(-/-) mice lacking IL-7. This effect was not related to reduced engraftment or homing of transplanted cells to the bone marrow. Instead, IL-7 deficiency diminished expansion of leukemia cells in the bone marrow and delayed leukemia-associated death of transplanted mice. Moreover, infiltration of different organs by T-ALL cells, which characterizes patients with advanced disease, was more heterogeneous and generally less efficient in IL-7-deficient mice. Leukemia progression was associated with increased Bcl-2 expression and cell viability, reduced p27(Kip1) expression, and decreased cell-cycle progression. Clinical measurements of IL-7 plasma levels and IL-7 receptor (IL-7R) expression in T-ALL patients versus healthy controls confirmed that IL-7 stimulates human leukemia cells. Our results establish that IL-7 contributes to the progression of human T-cell leukemia, and they offer preclinical validation of the concept that targeting IL-7/IL-7R signaling in the tumor microenvironment could elicit therapeutic effects in T-ALL.


Leukemia | 2012

AMP-dependent kinase/mammalian target of rapamycin complex 1 signaling in T-cell acute lymphoblastic leukemia: therapeutic implications

Cecilia Grimaldi; Francesca Chiarini; Giovanna Tabellini; Francesca Ricci; P L Tazzari; Michela Battistelli; E Falcieri; Roberta Bortul; Fraia Melchionda; Ilaria Iacobucci; Pasqualepaolo Pagliaro; Giovanni Martinelli; Andrea Pession; João T. Barata; James A. McCubrey; A M Martelli

The mammalian target of rapamycin (mTOR) serine/threonine kinase is the catalytic subunit of two multi-protein complexes, referred to as mTORC1 and mTORC2. Signaling downstream of mTORC1 has a critical role in leukemic cell biology by controlling mRNA translation of genes involved in both cell survival and proliferation. mTORC1 activity can be downmodulated by upregulating the liver kinase B1/AMP-activated protein kinase (LKB1/AMPK) pathway. Here, we have explored the therapeutic potential of the anti-diabetic drug, metformin (an LKB1/AMPK activator), against both T-cell acute lymphoblastic leukemia (T-ALL) cell lines and primary samples from T-ALL patients displaying mTORC1 activation. Metformin affected T-ALL cell viability by inducing autophagy and apoptosis. However, it was much less toxic against proliferating CD4+ T-lymphocytes from healthy donors. Western blot analysis demonstrated dephosphorylation of mTORC1 downstream targets. Unlike rapamycin, we found a marked inhibition of mRNA translation in T-ALL cells treated with metformin. Remarkably, metformin targeted the side population of T-ALL cell lines as well as a putative leukemia-initiating cell subpopulation (CD34+/CD7−/CD4−) in patient samples. In conclusion, metformin displayed a remarkable anti-leukemic activity, which emphasizes future development of LKB1/AMPK activators as clinical candidates for therapy in T-ALL.


Haematologica | 2010

Regulation of PTEN by CK2 and Notch1 in primary T-cell acute lymphoblastic leukemia: rationale for combined use of CK2- and gamma-secretase inhibitors

Ana Silva; Patrícia Y. Jotta; André Bortolini Silveira; Daniel Ribeiro; Silvia Regina Brandalise; J. Andrés Yunes; João T. Barata

T-cell acute lymphoblastic leukemia (T-ALL) patients frequently display NOTCH1 activating mutations and Notch can transcriptionally down-regulate the tumor suppressor PTEN. However, it is not clear whether NOTCH1 mutations associate with decreased PTEN expression in primary T-ALL. Here, we compared patients with or without NOTCH1 mutations and report that the former presented higher MYC transcript levels and decreased PTEN mRNA expression. We recently showed that T-ALL cells frequently display CK2-mediated PTEN phosphorylation, resulting in PTEN protein stabilization and concomitant functional inactivation. Accordingly, the T-ALL samples analyzed, irrespectively of their NOTCH1 mutational status, expressed significantly higher PTEN protein levels than normal controls. To evaluate the integrated functional impact of Notch transcriptional and CK2 post-translational inactivation of PTEN, we treated T-ALL cells with both the gamma-secretase inhibitor DAPT and the CK2 inhibitors DRB/TBB. Our data suggest that combined use of gamma-secretase and CK2 inhibitors may have therapeutic potential in T-ALL.


Blood | 2009

IL-7 sustains CD31 expression in human naive CD4+ T cells and preferentially expands the CD31+ subset in a PI3K-dependent manner.

Rita I. Azevedo; Maria Vieira D. Soares; João T. Barata; Rita Tendeiro; Ana Serra-Caetano; Rui M. M. Victorino; Ana E. Sousa

The CD31(+) subset of human naive CD4(+) T cells is thought to contain the population of cells that have recently emigrated from the thymus, while their CD31(-) counterparts have been proposed to originate from CD31(+) cells after homeostatic cell division. Naive T-cell maintenance is known to involve homeostatic cytokines such as interleukin-7 (IL-7). It remains to be investigated what role this cytokine has in the homeostasis of naive CD4(+) T-cell subsets defined by CD31 expression. We provide evidence that IL-7 exerts a preferential proliferative effect on CD31(+) naive CD4(+) T cells from adult peripheral blood compared with the CD31(-) subset. IL-7-driven proliferation did not result in loss of CD31 expression, suggesting that CD31(+) naive CD4(+) T cells can undergo cytokine-driven homeostatic proliferation while preserving CD31. Furthermore, IL-7 sustained or increased CD31 expression even in nonproliferating cells. Both proliferation and CD31 maintenance were dependent on the activation of phosphoinositide 3-kinase (PI3K) signaling. Taken together, our data suggest that during adulthood CD31(+) naive CD4(+) T cells are maintained by IL-7 and that IL-7-based therapies may exert a preferential effect on this population.

Collaboration


Dive into the João T. Barata's collaboration.

Top Co-Authors

Avatar

Leila R. Martins

Instituto de Medicina Molecular

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alice Melão

Instituto de Medicina Molecular

View shared research outputs
Top Co-Authors

Avatar

Ana Silva

National Institute for Medical Research

View shared research outputs
Top Co-Authors

Avatar

Leonor M. Sarmento

Instituto de Medicina Molecular

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Vassiliki A. Boussiotis

Beth Israel Deaconess Medical Center

View shared research outputs
Top Co-Authors

Avatar

José Andrés Yunes

State University of Campinas

View shared research outputs
Researchain Logo
Decentralizing Knowledge