Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Leila R. Martins is active.

Publication


Featured researches published by Leila R. Martins.


Journal of Clinical Investigation | 2008

PTEN posttranslational inactivation and hyperactivation of the PI3K/Akt pathway sustain primary T cell leukemia viability

Ana Silva; J. Andrés Yunes; Bruno A. Cardoso; Leila R. Martins; Patrícia Y. Jotta; Miguel Abecasis; Alexandre E. Nowill; Nick R. Leslie; Angelo A. Cardoso; João T. Barata

Mutations in the phosphatase and tensin homolog (PTEN) gene leading to PTEN protein deletion and subsequent activation of the PI3K/Akt signaling pathway are common in cancer. Here we show that PTEN inactivation in human T cell acute lymphoblastic leukemia (T-ALL) cells is not always synonymous with PTEN gene lesions and diminished protein expression. Samples taken from patients with T-ALL at the time of diagnosis very frequently showed constitutive hyperactivation of the PI3K/Akt pathway. In contrast to immortalized cell lines, most primary T-ALL cells did not harbor PTEN gene alterations, displayed normal PTEN mRNA levels, and expressed higher PTEN protein levels than normal T cell precursors. However, PTEN overexpression was associated with decreased PTEN lipid phosphatase activity, resulting from casein kinase 2 (CK2) overexpression and hyperactivation. In addition, T-ALL cells had constitutively high levels of ROS, which can also downmodulate PTEN activity. Accordingly, both CK2 inhibitors and ROS scavengers restored PTEN activity and impaired PI3K/Akt signaling in T-ALL cells. Strikingly, inhibition of PI3K and/or CK2 promoted T-ALL cell death without affecting normal T cell precursors. Overall, our data indicate that T-ALL cells inactivate PTEN mostly in a nondeletional, posttranslational manner. Pharmacological manipulation of these mechanisms may open new avenues for T-ALL treatment.


PLOS ONE | 2010

Low Doses of Ionizing Radiation Promote Tumor Growth and Metastasis by Enhancing Angiogenesis

Inês Vala; Leila R. Martins; Natsuko Imaizumi; Raquel J. Nunes; José Rino; François Kuonen; Lara Carvalho; Curzio Rüegg; Isabel Monteiro Grillo; João T. Barata; Marc Mareel; Susana Constantino Rosa Santos

Radiotherapy is a widely used treatment option in cancer. However, recent evidence suggests that doses of ionizing radiation (IR) delivered inside the tumor target volume, during fractionated radiotherapy, can promote tumor invasion and metastasis. Furthermore, the tissues that surround the tumor area are also exposed to low doses of IR that are lower than those delivered inside the tumor mass, because external radiotherapy is delivered to the tumor through multiple radiation beams, in order to prevent damage of organs at risk. The biological effects of these low doses of IR on the healthy tissue surrounding the tumor area, and in particular on the vasculature remain largely to be determined. We found that doses of IR lower or equal to 0.8 Gy enhance endothelial cell migration without impinging on cell proliferation or survival. Moreover, we show that low-dose IR induces a rapid phosphorylation of several endothelial cell proteins, including the Vascular Endothelial Growth Factor (VEGF) Receptor-2 and induces VEGF production in hypoxia mimicking conditions. By activating the VEGF Receptor-2, low-dose IR enhances endothelial cell migration and prevents endothelial cell death promoted by an anti-angiogenic drug, bevacizumab. In addition, we observed that low-dose IR accelerates embryonic angiogenic sprouting during zebrafish development and promotes adult angiogenesis during zebrafish fin regeneration and in the murine Matrigel assay. Using murine experimental models of leukemia and orthotopic breast cancer, we show that low-dose IR promotes tumor growth and metastasis and that these effects were prevented by the administration of a VEGF receptor-tyrosine kinase inhibitor immediately before IR exposure. These findings demonstrate a new mechanism to the understanding of the potential pro-metastatic effect of IR and may provide a new rationale basis to the improvement of current radiotherapy protocols.


Cancer Research | 2011

IL-7 Contributes to the Progression of Human T-cell Acute Lymphoblastic Leukemias

Ana Silva; Angelo Brunelli Albertoni Laranjeira; Leila R. Martins; Bruno A. Cardoso; Jocelyne Demengeot; J. Andrés Yunes; Benedict Seddon; João T. Barata

The importance of microenvironmental factors for driving progression in leukemia has been debated. Previous evidence has pointed to interleukin-7 (IL-7), a fundamental cytokine to normal T-cell development and homeostasis, as an important determinant of the viability and proliferation of T-cell acute lymphoblastic leukemia (T-ALL) cells in vitro. In this study, we report that IL-7 is also a critical determinant of T-ALL progression. T-ALL cell lines and primary T-ALL samples initiated leukemia more slowly when engrafted to immunocompromised Rag2(-/-)IL2rg(-/-) mice lacking IL-7. This effect was not related to reduced engraftment or homing of transplanted cells to the bone marrow. Instead, IL-7 deficiency diminished expansion of leukemia cells in the bone marrow and delayed leukemia-associated death of transplanted mice. Moreover, infiltration of different organs by T-ALL cells, which characterizes patients with advanced disease, was more heterogeneous and generally less efficient in IL-7-deficient mice. Leukemia progression was associated with increased Bcl-2 expression and cell viability, reduced p27(Kip1) expression, and decreased cell-cycle progression. Clinical measurements of IL-7 plasma levels and IL-7 receptor (IL-7R) expression in T-ALL patients versus healthy controls confirmed that IL-7 stimulates human leukemia cells. Our results establish that IL-7 contributes to the progression of human T-cell leukemia, and they offer preclinical validation of the concept that targeting IL-7/IL-7R signaling in the tumor microenvironment could elicit therapeutic effects in T-ALL.


Blood | 2010

Targeting CK2 overexpression and hyperactivation as a novel therapeutic tool in chronic lymphocytic leukemia

Leila R. Martins; Paulo Lúcio; Milene Costa da Silva; Kenna L. Anderes; Paula Gameiro; Maria Gomez da Silva; João T. Barata

Expression of protein kinase CK2 is frequently deregulated in cancer and mounting evidence implicates CK2 in tumorigenesis. Here, we show that CK2 is overexpressed and hyperactivated in chronic lymphocytic leukemia (CLL). Inhibition of CK2 induces apoptosis of CLL cells without significantly affecting normal B and T lymphocytes. Importantly, this effect is not reversed by coculture with OP9 stromal cells, which are otherwise capable of rescuing CLL cells from in vitro spontaneous apoptosis. CLL cell death upon CK2 inhibition is mediated by inactivation of PKC, a PI3K downstream target, and correlates with increased PTEN activity, indicating that CK2 promotes CLL cell survival at least in part via PI3K-dependent signaling. Although CK2 antagonists induce significant apoptosis of CLL cells in all patient samples analyzed, sensitivity to CK2 blockade positively correlates with the percentage of CLL cells in the peripheral blood, β2 microglobulin serum levels and clinical stage. These data suggest that subsets of patients with aggressive and advanced stage disease may especially benefit from therapeutic strategies targeting CK2 function. Overall, our study indicates that CK2 plays a critical role in CLL cell survival, laying the groundwork for the inclusion of CK2 inhibitors into future therapeutic strategies.


Leukemia | 2014

Activity of the clinical-stage CK2-specific inhibitor CX-4945 against chronic lymphocytic leukemia

Leila R. Martins; P Lúcio; A Melão; I Antunes; Bruno A. Cardoso; R Stansfield; Maria Teresa Sabrina Bertilaccio; Paolo Ghia; D Drygin; Maria Gomes da Silva; João T. Barata

Activity of the clinical-stage CK2-specific inhibitor CX-4945 against chronic lymphocytic leukemia


PLOS ONE | 2009

Highly Active Microbial Phosphoantigen Induces Rapid yet Sustained MEK/Erk- and PI-3K/Akt-Mediated Signal Transduction in Anti-Tumor Human γδ T-Cells

Daniel V. Correia; Francisco d'Orey; Bruno A. Cardoso; Telma Lança; Ana Rita Grosso; Ana deBarros; Leila R. Martins; João T. Barata; Bruno Silva-Santos

Background The unique responsiveness of Vγ9Vδ2 T-cells, the major γδ subset of human peripheral blood, to non-peptidic prenyl pyrophosphate antigens constitutes the basis of current γδ T-cell-based cancer immunotherapy strategies. However, the molecular mechanisms responsible for phosphoantigen-mediated activation of human γδ T-cells remain unclear. In particular, previous reports have described a very slow kinetics of activation of T-cell receptor (TCR)-associated signal transduction pathways by isopentenyl pyrophosphate and bromohydrin pyrophosphate, seemingly incompatible with direct binding of these antigens to the Vγ9Vδ2 TCR. Here we have studied the most potent natural phosphoantigen yet identified, (E)-4-hydroxy-3-methyl-but-2-enyl pyrophosphate (HMB-PP), produced by Eubacteria and Protozoa, and examined its γδ T-cell activation and anti-tumor properties. Methodology/Principal Findings We have performed a comparative study between HMB-PP and the anti-CD3ε monoclonal antibody OKT3, used as a reference inducer of bona fide TCR signaling, and followed multiple cellular and molecular γδ T-cell activation events. We show that HMB-PP activates MEK/Erk and PI-3K/Akt pathways as rapidly as OKT3, and induces an almost identical transcriptional profile in Vγ9+ T-cells. Moreover, MEK/Erk and PI-3K/Akt activities are indispensable for the cellular effects of HMB-PP, including γδ T-cell activation, proliferation and anti-tumor cytotoxicity, which are also abolished upon antibody blockade of the Vγ9+ TCR Surprisingly, HMB-PP treatment does not induce down-modulation of surface TCR levels, and thereby sustains γδ T-cell activation upon re-stimulation. This ultimately translates in potent human γδ T-cell anti-tumor function both in vitro and in vivo upon transplantation of human leukemia cells into lymphopenic mice, Conclusions/Significance The development of efficient cancer immunotherapy strategies critically depends on our capacity to maximize anti-tumor effector T-cell responses. By characterizing the intracellular mechanisms of HMB-PP-mediated activation of the highly cytotoxic Vγ9+ T-cell subset, our data strongly support the usage of this microbial antigen in novel cancer clinical trials.


Leukemia | 2014

Cytotoxic activity of the casein kinase 2 inhibitor CX-4945 against T-cell acute lymphoblastic leukemia: targeting the unfolded protein response signaling.

Francesca Buontempo; Ester Orsini; Leila R. Martins; I Antunes; Annalisa Lonetti; Francesca Chiarini; Giovanna Tabellini; Cecilia Evangelisti; Fraia Melchionda; Andrea Pession; Alice Bertaina; F Locatelli; James A. McCubrey; Alessandra Cappellini; João T. Barata; A M Martelli

Constitutively active casein kinase 2 (CK2) signaling is a common feature of T-cell acute lymphoblastic leukemia (T-ALL). CK2 phosphorylates PTEN (phosphatase and tensin homolog) tumor suppressor, resulting in PTEN stabilization and functional inactivation. Downregulation of PTEN activity has an impact on PI3K/Akt/mTOR signaling, which is of fundamental importance for T-ALL cell survival. These observations lend compelling weight to the application of CK2 inhibitors in the therapy of T-ALL. Here, we have analyzed the therapeutic potential of CX-4945—a novel, highly specific, orally available, ATP-competitive inhibitor of CK2α. We show that CX-4945 treatment induced apoptosis in T-ALL cell lines and patient T lymphoblasts. CX-4945 downregulated PI3K/Akt/mTOR signaling in leukemic cells. Notably, CX-4945 affected the unfolded protein response (UPR), as demonstrated by a significant decrease in the levels of the main UPR regulator GRP78/BIP, and led to apoptosis via upregulation of the ER stress/UPR cell death mediators IRE1α and CHOP. In vivo administration of CX-4945 to a subcutaneous xenotransplant model of human T-ALL significantly delayed tumor growth. Our findings indicate that modulation of the ER stress/UPR signaling through CK2 inhibition could be exploited for inducing apoptosis in T-ALL cells and that CX-4945 may be an efficient treatment for those T-ALLs displaying upregulation of CK2α/PI3K/Akt/mTOR signaling.


Haematologica | 2014

Adult B-cell acute lymphoblastic leukemia cells display decreased PTEN activity and constitutive hyperactivation of PI3K/Akt pathway despite high PTEN protein levels

A. Margarida Gomes; Maria Vieira D. Soares; P. R. G. Ribeiro; Joana Caldas; Vanda Póvoa; Leila R. Martins; Alice Melão; Ana Serra-Caetano; Aida B. Sousa; João F. Lacerda; João T. Barata

Adult B-cell acute lymphoblastic leukemia remains a major therapeutic challenge, requiring a better characterization of the molecular determinants underlying disease progression and resistance to treatment. Here, using a phospho-flow cytometry approach we show that adult diagnostic B-cell acute lymphoblastic leukemia specimens display PI3K/Akt pathway hyperactivation, irrespective of their BCR-ABL status and despite paradoxically high basal expression of PTEN, the major negative regulator of the pathway. Protein kinase CK2 is known to phosphorylate PTEN thereby driving PTEN protein stabilization and concomitant PTEN functional inactivation. In agreement, we found that adult B-cell acute lymphoblastic leukemia samples show significantly higher CK2 kinase activity and lower PTEN lipid phosphatase activity than healthy controls. Moreover, the clinical-grade CK2 inhibitor CX-4945 (Silmitasertib) reversed PTEN levels in leukemia cells to those observed in healthy controls, and promoted leukemia cell death without significantly affecting normal bone marrow cells. Our studies indicate that CK2-mediated PTEN posttranslational inactivation, associated with PI3K/Akt pathway hyperactivation, are a common event in adult B-cell acute lymphoblastic leukemia and suggest that CK2 inhibition may constitute a valid, novel therapeutic tool in this malignancy.


Oncogene | 2015

CHK1 overexpression in T-cell acute lymphoblastic leukemia is essential for proliferation and survival by preventing excessive replication stress.

Leonor M. Sarmento; Póvoa; Nascimento R; Real G; I Antunes; Leila R. Martins; Moita C; Paula M. Alves; Miguel Abecasis; Moita Lf; Parkhouse Rm; Jules P.P. Meijerink; João T. Barata

Checkpoint kinase 1 (CHK1) is a key component of the ATR (ataxia telangiectasia-mutated and Rad3-related)-dependent DNA damage response pathway that protect cells from replication stress, a cell intrinsic phenomenon enhanced by oncogenic transformation. Here, we show that CHK1 is overexpressed and hyperactivated in T-cell acute lymphoblastic leukemia (T-ALL). CHEK1 mRNA is highly abundant in patients of the proliferative T-ALL subgroup and leukemia cells exhibit constitutively elevated levels of the replication stress marker phospho-RPA32 and the DNA damage marker γH2AX. Importantly, pharmacologic inhibition of CHK1 using PF-004777736 or CHK1 short hairpin RNA-mediated silencing impairs T-ALL cell proliferation and viability. CHK1 inactivation results in the accumulation of cells with incompletely replicated DNA, ensuing DNA damage, ATM/CHK2 activation and subsequent ATM- and caspase-3-dependent apoptosis. In contrast to normal thymocytes, primary T-ALL cells are sensitive to therapeutic doses of PF-004777736, even in the presence of stromal or interleukin-7 survival signals. Moreover, CHK1 inhibition significantly delays in vivo growth of xenotransplanted T-ALL tumors. We conclude that CHK1 is critical for T-ALL proliferation and viability by downmodulating replication stress and preventing ATM/caspase-3-dependent cell death. Pharmacologic inhibition of CHK1 may be a promising therapeutic alternative for T-ALL treatment.


Leukemia | 2009

Interleukin-4 stimulates proliferation and growth of T-cell acute lymphoblastic leukemia cells by activating mTOR signaling.

Bruno A. Cardoso; Leila R. Martins; Cristina Santos; Lee M. Nadler; Vassiliki A. Boussiotis; Angelo A. Cardoso; João T. Barata

Interleukin-4 stimulates proliferation and growth of T-cell acute lymphoblastic leukemia cells by activating mTOR signaling

Collaboration


Dive into the Leila R. Martins's collaboration.

Top Co-Authors

Avatar

João T. Barata

Instituto de Medicina Molecular

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Maria Gomes da Silva

Instituto Português de Oncologia Francisco Gentil

View shared research outputs
Top Co-Authors

Avatar

Alice Melão

Instituto de Medicina Molecular

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Miguel Abecasis

Instituto Português de Oncologia Francisco Gentil

View shared research outputs
Top Co-Authors

Avatar

Paula Gameiro

Nottingham University Hospitals NHS Trust

View shared research outputs
Researchain Logo
Decentralizing Knowledge