Joaquín Medina
Technical University of Madrid
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Joaquín Medina.
Proceedings of the National Academy of Sciences of the United States of America | 2007
Fernando Novillo; Joaquín Medina; Julio Salinas
The C-repeat-binding factor (CBF)/dehydration-responsive element-binding factor (DREB1) proteins constitute a small family of Arabidopsis transcriptional activators (CBF1/DREB1B, CBF2/DREB1C, and CBF3/DREB1A) that play a prominent role in cold acclimation. A fundamental question about these factors that remains to be answered is whether they are functionally equivalent. Recently, we reported that CBF2 negatively regulates CBF1 and CBF3 expression, and that CBFs are subjected to different temporal regulation during cold acclimation, which suggested this might not be the case. In this study, we have analyzed the expression of CBF genes in different tissues of Arabidopsis, during development and in response to low temperature, and characterized RNA interference (RNAi) and antisense lines that fail to accumulate CBF1 or/and CBF3 mRNAs under cold conditions. We found that CBF1 and CBF3 are regulated in a different way than CBF2. Moreover, in contrast to CBF2, CBF1 and CBF3 are not involved in regulating other CBF genes and positively regulate cold acclimation by activating the same subset of CBF-target genes. All these results demonstrate that CBF1 and CBF3 have different functions than CBF2. We also found that the CBF regulon is composed of at least two different kind of genes, one of them requiring the simultaneous expression of both CBF1 and CBF3 to be properly induced. This indicates that CBF1 and CBF3 have a concerted additive effect to induce the whole CBF regulon and the complete development of cold acclimation.
Plant Science | 2011
Joaquín Medina; Rafael Catalá; Julio Salinas
Low temperature is one of the adverse environmental factors that most affects plant growth and development. Temperate plants have evolved the capacity to acquire chilling and freezing tolerance after being exposed to low-nonfreezing temperatures. This adaptive response, named cold acclimation, involves many physiological and biochemical changes that mainly rely on reprogramming gene expression. Currently, the best documented genetic pathway leading to gene induction under low temperature conditions is the one mediated by the Arabidopsis C-repeat/dehydration-responsive element binding factors (CBFs), a small family of three transcriptional activators (CBF1-3) that bind to the C-repeat/dehydration-responsive element, which is present in the promoters of many cold-responsive genes, and induce transcription. The CBF genes are themselves induced by cold. Different evidences indicate that the CBF transcriptional network plays a critical role in cold acclimation in Arabidopsis. In this review, recent advances on the regulation and function of CBF factors are provided and discussed.
Proceedings of the National Academy of Sciences of the United States of America | 2011
Rafael Catalá; Joaquín Medina; Julio Salinas
Certain plants increase their freezing tolerance in response to low nonfreezing temperatures, an adaptive process named cold acclimation. Light has been shown to be required for full cold acclimation, although how light and cold signals integrate and cross-talk to enhance freezing tolerance still remains poorly understood. Here, we show that HY5 levels are regulated by low temperature transcriptionally, via a CBF- and ABA-independent pathway, and posttranslationally, via protein stabilization through nuclear depletion of COP1. Furthermore, we demonstrate that HY5 positively regulates cold-induced gene expression through the Z-box and other cis-acting elements, ensuring the complete development of cold acclimation. These findings uncover unexpected functions for HY5, COP1, and the Z-box in Arabidopsis response to low temperature, provide insights on how cold and light signals integrate to optimize plant survival under freezing temperatures, and reveal the complexity of the molecular mechanisms plants have evolved to respond and adapt to their fluctuating natural environment.
Plant Journal | 2013
Mathias Hentrich; Christine Böttcher; Petra Düchting; Youfa Cheng; Yunde Zhao; Oliver Berkowitz; Josette Masle; Joaquín Medina; Stephan Pollmann
Interactions between phytohormones play important roles in the regulation of plant growth and development, but knowledge of the networks controlling hormonal relationships, such as between oxylipins and auxins, is just emerging. Here, we report the transcriptional regulation of two Arabidopsis YUCCA genes, YUC8 and YUC9, by oxylipins. Similar to previously characterized YUCCA family members, we show that both YUC8 and YUC9 are involved in auxin biosynthesis, as demonstrated by the increased auxin contents and auxin-dependent phenotypes displayed by gain-of-function mutants as well as the significantly decreased indole-3-acetic acid (IAA) levels in yuc8 and yuc8/9 knockout lines. Gene expression data obtained by qPCR analysis and microscopic examination of promoter-reporter lines reveal an oxylipin-mediated regulation of YUC9 expression that is dependent on the COI1 signal transduction pathway. In support of these findings, the roots of the analyzed yuc knockout mutants displayed a reduced response to methyl jasmonate (MeJA). The similar response of the yuc8 and yuc9 mutants to MeJA in cotyledons and hypocotyls suggests functional overlap of YUC8 and YUC9 in aerial tissues, while their function in roots shows some specificity, probably in part related to different spatio-temporal expression patterns of the two genes. These results provide evidence for an intimate functional relationship between oxylipin signaling and auxin homeostasis.
Journal of Experimental Botany | 2014
Alba-Rocío Corrales; Sergio G. Nebauer; Laura Carrillo; Pedro Fernández-Nohales; Jorge Marqués; Begoña Renau-Morata; Antonio Granell; Stephan Pollmann; Jesús Vicente-Carbajosa; Rosa-Victoria Molina; Joaquín Medina
DNA binding with One Finger (DOF) transcription factors are involved in multiple aspects of plant growth and development but their precise roles in abiotic stress tolerance are largely unknown. Here we report a group of five tomato DOF genes, homologous to Arabidopsis Cycling DOF Factors (CDFs), that function as transcriptional regulators involved in responses to drought and salt stress and flowering-time control in a gene-specific manner. SlCDF1-5 are nuclear proteins that display specific binding with different affinities to canonical DNA target sequences and present diverse transcriptional activation capacities in vivo. SlCDF1-5 genes exhibited distinct diurnal expression patterns and were differentially induced in response to osmotic, salt, heat, and low-temperature stresses. Arabidopsis plants overexpressing SlCDF1 or SlCDF3 showed increased drought and salt tolerance. In addition, the expression of various stress-responsive genes, such as COR15, RD29A, and RD10, were differentially activated in the overexpressing lines. Interestingly, overexpression in Arabidopsis of SlCDF3 but not SlCDF1 promotes late flowering through modulation of the expression of flowering control genes such as CO and FT. Overall, our data connect SlCDFs to undescribed functions related to abiotic stress tolerance and flowering time through the regulation of specific target genes and an increase in particular metabolites.
Journal of Experimental Botany | 2012
Fernando Novillo; Joaquín Medina; Marta Rodriguez-Franco; Gunther Neuhaus; Julio Salinas
Arabidopsis CBF genes (CBF1–CBF3) encode transcription factors having a major role in cold acclimation, the adaptive process whereby certain plants increase their freezing tolerance in response to low non-freezing temperatures. Under these conditions, the CBF genes are induced and their corresponding proteins stimulate the expression of target genes configuring low-temperature transcriptome and conditioning Arabidopsis freezing tolerance. CBF2 seems to be the most determinant of the CBFs since it also regulates CBF1 and CBF3 expression. Despite the relevance of CBF genes in cold acclimation, little is known about the molecular components that control their expression. To uncover factors acting upstream of CBF2, mutagenized Arabidopsis containing the luciferase reporter gene under the control of the CBF2 promoter were screened for plants with de-regulated CBF2 expression. Here, the identification and characterization of five of these mutants, named acex (altered CBF2 expression), is presented. Three mutants show increased levels of cold-induced CBF2 transcripts compared with wild-type plants, the other two exhibiting reduced levels. Some mutants are also affected in cold induction of CBF1 and CBF3. Furthermore, the mutants characterized display unique phenotypes for tolerance to abiotic stresses, including freezing, dehydration, and high salt. These results demonstrate that cold induction of CBF2 is subjected to both positive and negative regulation through different signal transduction pathways, some of them also mediating the expression of other CBF genes as well as Arabidopsis responses to abiotic stresses.
Journal of Experimental Botany | 2007
Joaquín Medina; María Luisa Ballesteros; Julio Salinas
Six new Arabidopsis thaliana genes (AtRCI2C-H) have been identified that show high homology to AtRCI2A and AtRCI2B. Sequence comparisons revealed that AtRCI2-related genes are widely spread among very different organisms, including other plant species, prokaryotes, fungi, and simply organized animals, and are also organized in gene families. Most RCI2 genes show a similar exon-intron organization, which indicates that they have been structurally conserved during evolution, and encode small, highly hydrophobic proteins containing two putative transmembrane domains. Consistently, the majority of AtRCI2 proteins localize in the plasma membrane. RCI2 proteins exhibit an elevated level of sequence similarity and seem to have evolved from a common ancestor. In spite of their high similarity, conserved subcellular localization, and common origin, experimental evidence is presented suggesting that different RCI2 proteins may have distinct functional roles. Thus, as previously demonstrated for AtRCI2A and AtRCI2B, the newly identified AtRCI2 genes (AtRCI2C-H) are differentially regulated in Arabidopsis organs and in response to abiotic stresses and ABA treatment. Furthermore, only the AtRCI2 proteins that do not contain the C-terminal hydrophilic tail (i.e. AtRCI2A-C and AtRCI2H) are able to complement for the loss of the yeast AtRCI2-related gene PMP3. On the basis of these results, different aspects on the evolution and roles of RCI2 genes are discussed.
Plant Signaling & Behavior | 2013
Mathias Hentrich; Beatriz Sánchez-Parra; Marta-Marina Pérez Alonso; Víctor Carrasco Loba; Laura Carrillo; Jesús Vicente-Carbajosa; Joaquín Medina; Stephan Pollmann
Auxin is associated with the regulation of virtually every aspect of plant growth and development. Many previous genetic and biochemical studies revealed that, among the proposed routes for the production of auxin, the so-called indole-3-pyruvic acid (IPA) pathway is the main source for indole-3-acetic acid (IAA) in plants. The IPA pathway involves the action of 2 classes of enzymes, tryptophan-pyruvate aminotransferases (TRYPTOPHAN AMINOTRANSFERASE OF ARABIDOPSIS 1(TAA1)/TRYPTOPHAN AMINOTRANSFERASE RELATED (TAR)) and flavin monooxygenases (YUCCA). Both enzyme classes appear to be encoded by small gene families in Arabidopsis consisting of 5 and 11 members, respectively. We recently showed that it is possible to induce transcript accumulation of 2 YUCCA genes, YUC8 and YUC9, by methyl jasmonate treatment. Both gene products were demonstrated to contribute to auxin biosynthesis in planta.1 Here we report that the overexpression of YUC8 as well as YUC9 led to strong lignification of plant aerial tissues. Furthermore, new evidence indicates that this abnormally strong secondary growth is linked to increased levels of ethylene production.
Plant Cell and Environment | 2017
Alba-Rocío Corrales; Laura Carrillo; Pilar Lasierra; Sergio G. Nebauer; José Domínguez-Figueroa; Begoña Renau-Morata; Stephan Pollmann; Antonio Granell; Rosa-Victoria Molina; Jesús Vicente-Carbajosa; Joaquín Medina
DNA-binding with one finger (DOF)-type transcription factors are involved in many fundamental processes in higher plants, from responses to light and phytohormones to flowering time and seed maturation, but their relation with abiotic stress tolerance is largely unknown. Here, we identify the roles of CDF3, an Arabidopsis DOF gene in abiotic stress responses and developmental processes like flowering time. CDF3 is highly induced by drought, extreme temperatures and abscisic acid treatment. The CDF3 T-DNA insertion mutant cdf3-1 is much more sensitive to drought and low temperature stress, whereas CDF3 overexpression enhances the tolerance of transgenic plants to drought, cold and osmotic stress and promotes late flowering. Transcriptome analysis revealed that CDF3 regulates a set of genes involved in cellular osmoprotection and oxidative stress, including the stress tolerance transcription factors CBFs, DREB2A and ZAT12, which involve both gigantea-dependent and independent pathways. Consistently, metabolite profiling disclosed that the total amount of some protective metabolites including γ-aminobutyric acid, proline, glutamine and sucrose were higher in CDF3-overexpressing plants. Taken together, these results indicate that CDF3 plays a multifaceted role acting on both flowering time and abiotic stress tolerance, in part by controlling the CBF/DREB2A-CRT/DRE and ZAT10/12 modules.
Frontiers in Plant Science | 2016
Md. Amir Hossain; Carlos Henriquez-Valencia; Marcela Gómez-Páez; Joaquín Medina; Ariel Orellana; Jesús Vicente-Carbajosa; Jan Zouhar
Unfavorable environmental and developmental conditions may cause disturbances in protein folding in the endoplasmic reticulum (ER) that are recognized and counteracted by components of the Unfolded Protein Response (UPR) signaling pathways. The early cellular responses include transcriptional changes to increase the folding and processing capacity of the ER. In this study, we systematically screened a collection of inducible transgenic Arabidopsis plants expressing a library of transcription factors for resistance toward UPR-inducing chemicals. We identified 23 candidate genes that may function as novel regulators of the UPR and of which only three genes (bZIP10, TBF1, and NF-YB3) were previously associated with the UPR. The putative role of identified candidate genes in the UPR signaling is supported by favorable expression patterns in both developmental and stress transcriptional analyses. We demonstrated that WRKY75 is a genuine regulator of the ER-stress cellular responses as its expression was found to be directly responding to ER stress-inducing chemicals. In addition, transgenic Arabidopsis plants expressing WRKY75 showed resistance toward salt stress, connecting abiotic and ER-stress responses.