Julio Salinas
Spanish National Research Council
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Julio Salinas.
Plant Physiology | 1995
Antonio Leyva; José A. Jarillo; Julio Salinas; José M. Martínez-Zapater
Anthocyanins, which accumulate in leaves and stems in response to low temperature and changes in light intensity, are synthesized through the phenylpropanoid pathway that is controlled by key enzymes that include phenylalanine ammonia-lyase (PAL) and chalcone synthase (CHS). In this work we demonstrate that PAL and CHS mRNAs accumulate in leaves of Arabidopsis thaliana (L.) Heynh. upon exposure to low temperature in a light-dependent manner. The regulation of the PAL1 gene expression by low temperature and light was examined by analyzing the expression of the [beta]-glucuronidase (uidA) reporter gene in transgenic Arabidopsis plants containing the uidA gene of Escherichia coli under the control of the PAL1 promoter. The results indicate that the accumulation of PAL1 mRNA is transcriptionally regulated. Histochemical staining for [beta]-glucuronidase activity showed that the PAL1 promoter is preferentially activated in photosynthetically active cells, paralleling anthocyanin accumulation. Moreover, we show that light may also be implicated in the regulation of the CHS gene in response to bacterial infiltration. Finally, using two transparent testa Arabidopsis mutants that are unable to accumulate anthocyanins, we demonstrate that these pigments are not required for successful development of freezing tolerance in this species.
Proceedings of the National Academy of Sciences of the United States of America | 2007
Fernando Novillo; Joaquín Medina; Julio Salinas
The C-repeat-binding factor (CBF)/dehydration-responsive element-binding factor (DREB1) proteins constitute a small family of Arabidopsis transcriptional activators (CBF1/DREB1B, CBF2/DREB1C, and CBF3/DREB1A) that play a prominent role in cold acclimation. A fundamental question about these factors that remains to be answered is whether they are functionally equivalent. Recently, we reported that CBF2 negatively regulates CBF1 and CBF3 expression, and that CBFs are subjected to different temporal regulation during cold acclimation, which suggested this might not be the case. In this study, we have analyzed the expression of CBF genes in different tissues of Arabidopsis, during development and in response to low temperature, and characterized RNA interference (RNAi) and antisense lines that fail to accumulate CBF1 or/and CBF3 mRNAs under cold conditions. We found that CBF1 and CBF3 are regulated in a different way than CBF2. Moreover, in contrast to CBF2, CBF1 and CBF3 are not involved in regulating other CBF genes and positively regulate cold acclimation by activating the same subset of CBF-target genes. All these results demonstrate that CBF1 and CBF3 have different functions than CBF2. We also found that the CBF regulon is composed of at least two different kind of genes, one of them requiring the simultaneous expression of both CBF1 and CBF3 to be properly induced. This indicates that CBF1 and CBF3 have a concerted additive effect to induce the whole CBF regulon and the complete development of cold acclimation.
Plant Physiology | 2008
Juan C. Cuevas; Rosa María López-Cobollo; Rubén Alcázar; Xavier Zarza; Csaba Koncz; Teresa Altabella; Julio Salinas; Antonio F. Tiburcio; Alejandro Ferrando
The levels of endogenous polyamines have been shown to increase in plant cells challenged with low temperature; however, the functions of polyamines in the regulation of cold stress responses are unknown. Here, we show that the accumulation of putrescine under cold stress is essential for proper cold acclimation and survival at freezing temperatures because Arabidopsis (Arabidopsis thaliana) mutants defective in putrescine biosynthesis (adc1, adc2) display reduced freezing tolerance compared to wild-type plants. Genes ADC1 and ADC2 show different transcriptional profiles upon cold treatment; however, they show similar and redundant contributions to cold responses in terms of putrescine accumulation kinetics and freezing sensitivity. Our data also demonstrate that detrimental consequences of putrescine depletion during cold stress are due, at least in part, to alterations in the levels of abscisic acid (ABA). Reduced expression of NCED3, a key gene involved in ABA biosynthesis, and down-regulation of ABA-regulated genes are detected in both adc1 and adc2 mutant plants under cold stress. Complementation analysis of adc mutants with ABA and reciprocal complementation tests of the aba2-3 mutant with putrescine support the conclusion that putrescine controls the levels of ABA in response to low temperature by modulating ABA biosynthesis and gene expression.
The Plant Cell | 1997
Leonor Ruiz-García; Francisco Madueño; Mark D. Wilkinson; George W. Haughn; Julio Salinas; José M. Martínez-Zapater
We have analyzed double mutants that combine late-flowering mutations at four flowering-time loci (FVE, FPA, FWA, and FT) with mutations at the LEAFY (LFY), APETALA1 (AP1), and TERMINAL FLOWER1 (TFL1) loci involved in the floral initiation process (FLIP). Double mutants between ft-1 or fwa-1 and lfy-6 completely lack flowerlike structures, indicating that both FWA and FT act redundantly with LFY to control AP1. Moreover, the phenotypes of ft-1 ap1-1 and fwa-1 ap1-1 double mutants are reminiscent of the phenotype of ap1-1 cal-1 double mutants, suggesting that FWA and FT could also be involved in the control of other FLIP genes. Such extreme phenotypes were not observed in double mutants between fve-2 or fpa-1 and lfy-6 ap1-1. Each of these showed a phenotype similar to that of ap1-1 or lfy-6 mutants grown under noninductive photoperiods, suggesting a redundant interaction with FLIP genes. Finally, the phenotype of double mutants combining the late-flowering mutations with tfl1-2 were also consistent with the different roles of flowering-time genes.
Plant Science | 2011
Joaquín Medina; Rafael Catalá; Julio Salinas
Low temperature is one of the adverse environmental factors that most affects plant growth and development. Temperate plants have evolved the capacity to acquire chilling and freezing tolerance after being exposed to low-nonfreezing temperatures. This adaptive response, named cold acclimation, involves many physiological and biochemical changes that mainly rely on reprogramming gene expression. Currently, the best documented genetic pathway leading to gene induction under low temperature conditions is the one mediated by the Arabidopsis C-repeat/dehydration-responsive element binding factors (CBFs), a small family of three transcriptional activators (CBF1-3) that bind to the C-repeat/dehydration-responsive element, which is present in the promoters of many cold-responsive genes, and induce transcription. The CBF genes are themselves induced by cold. Different evidences indicate that the CBF transcriptional network plays a critical role in cold acclimation in Arabidopsis. In this review, recent advances on the regulation and function of CBF factors are provided and discussed.
The Plant Cell | 2003
Rafael Catalá; Elisa Santos; Jose M. Alonso; Joseph R. Ecker; José M. Martínez-Zapater; Julio Salinas
Transient increases in cytosolic free calcium concentration ([Ca2+]cyt) are essential for plant responses to a variety of environmental stimuli, including low temperature. Subsequent reestablishment of [Ca2+]cyt to resting levels by Ca2+ pumps and C-REPEAT BINDING FACTOR/DEHYDRATION RESPONSIVE ELEMENT BINDING FACTOR 1 (Ca2+/H+) antiporters is required for the correct transduction of the signal. We have isolated a cDNA from Arabidopsis that corresponds to a new cold-inducible gene, RARE COLD INDUCIBLE4 (RCI4), which was identical to CALCIUM EXCHANGER 1 (CAX1), a gene that encodes a vacuolar Ca2+/H+ antiporter involved in the regulation of intracellular Ca2+ levels. The expression of CAX1 was induced in response to low temperature through an abscisic acid–independent pathway. To determine the function of CAX1 in Arabidopsis stress tolerance, we identified two T-DNA insertion mutants, cax1-3 and cax1-4, that display reduced tonoplast Ca2+/H+ antiport activity. The mutants showed no significant differences with respect to the wild type when analyzed for dehydration, high-salt, chilling, or constitutive freezing tolerance. However, they exhibited increased freezing tolerance after cold acclimation, demonstrating that CAX1 plays an important role in this adaptive response. This phenotype correlates with the enhanced expression of CBF/DREB1 genes and their corresponding targets in response to low temperature. Our results indicate that CAX1 ensures the accurate development of the cold-acclimation response in Arabidopsis by controlling the induction of CBF/DREB1 and downstream genes.
Plant Physiology | 2005
Carlos Alonso-Blanco; Concepción Gómez-Mena; Francisco Llorente; Maarten Koornneef; Julio Salinas; José M. Martínez-Zapater
Natural variation for freezing tolerance is a major component of adaptation and geographic distribution of plant species. However, little is known about the genes and molecular mechanisms that determine its naturally occurring diversity. We have analyzed the intraspecific freezing tolerance variation existent between two geographically distant accessions of Arabidopsis (Arabidopsis thaliana), Cape Verde Islands (Cvi) and Landsberg erecta (Ler). They differed in their freezing tolerance before and after cold acclimation, as well as in the cold acclimation response in relation to photoperiod conditions. Using a quantitative genetic approach, we found that freezing tolerance differences after cold acclimation were determined by seven quantitative trait loci (QTL), named FREEZING TOLERANCE QTL 1 (FTQ1) to FTQ7. FTQ4 was the QTL with the largest effect detected in two photoperiod conditions, while five other FTQ loci behaved as photoperiod dependent. FTQ4 colocated with the tandem repeated genes C-REPEAT BINDING FACTOR 1 (CBF1), CBF2, and CBF3, which encode transcriptional activators involved in the cold acclimation response. The low freezing tolerance of FTQ4-Cvi alleles was associated with a deletion of the promoter region of Cvi CBF2, and with low RNA expression of CBF2 and of several CBF target genes. Genetic complementation of FTQ4-Cvi plants with a CBF2-Ler transgene suggests that such CBF2 allelic variation is the cause of CBF2 misexpression and the molecular basis of FTQ4.
Proceedings of the National Academy of Sciences of the United States of America | 2011
Rafael Catalá; Joaquín Medina; Julio Salinas
Certain plants increase their freezing tolerance in response to low nonfreezing temperatures, an adaptive process named cold acclimation. Light has been shown to be required for full cold acclimation, although how light and cold signals integrate and cross-talk to enhance freezing tolerance still remains poorly understood. Here, we show that HY5 levels are regulated by low temperature transcriptionally, via a CBF- and ABA-independent pathway, and posttranslationally, via protein stabilization through nuclear depletion of COP1. Furthermore, we demonstrate that HY5 positively regulates cold-induced gene expression through the Z-box and other cis-acting elements, ensuring the complete development of cold acclimation. These findings uncover unexpected functions for HY5, COP1, and the Z-box in Arabidopsis response to low temperature, provide insights on how cold and light signals integrate to optimize plant survival under freezing temperatures, and reveal the complexity of the molecular mechanisms plants have evolved to respond and adapt to their fluctuating natural environment.
Plant Molecular Biology | 1994
José A. Jarillo; Juan Capel; Antonio Leyva; José M. Martínez-Zapater; Julio Salinas
We have isolated two Rare Cold-Inducible (RCI1 and RCI2) cDNAs by screening a cDNA library prepared from cold-acclimated etiolated seedlings of Arabidopsis thaliana with a subtracted probe. RNA-blot hybridizations revealed that the expression of both RCI1 and RCI2 genes is induced by low temperature independently of the plant organ or the developmental stage considered. However, RCI1 mRNA accumulates faster and at higher levels than the RCI2 one indicating that these genes have differential responsiveness to cold stress. Additionally, when plants are returned to room temperature, RCI1 mRNA decreases faster than RCI2. In contrast to most of the cold-inducible plant genes characterized, the expression of RCI1 and RCI2 is not induced by ABA or water stress. The nucleotide sequences of RCI1 and RCI2 cDNAs predict two acidic polypeptides of 255 and 251 amino acids with molecular weights of 29 and 28 kDa respectively. The alignment of these polypeptides indicates that they have 181 identical amino acids suggesting that the corresponding genes have a common origin. Sequence comparisons reveal no similarities between the RCI proteins and any other cold-regulated plant protein so far described. Instead, they demonstrate that the RCI proteins are highly homologous to a family of proteins, known as 14-3-3 proteins, which are thought to be involved in the regulation of multifunctional protein kinases.
The Plant Cell | 2008
Arnaldo L. Schapire; Boris Voigt; Jan Jasik; Abel Rosado; Rosa María López-Cobollo; Diedrik Menzel; Julio Salinas; Stefano Mancuso; Victoriano Valpuesta; František Baluška; Miguel A. Botella
Plasma membrane repair in animal cells uses synaptotagmin 7, a Ca2+-activated membrane fusion protein that mediates delivery of intracellular membranes to wound sites by a mechanism resembling neuronal Ca2+-regulated exocytosis. Here, we show that loss of function of the homologous Arabidopsis thaliana Synaptotagmin 1 protein (SYT1) reduces the viability of cells as a consequence of a decrease in the integrity of the plasma membrane. This reduced integrity is enhanced in the syt1-2 null mutant in conditions of osmotic stress likely caused by a defective plasma membrane repair. Consistent with a role in plasma membrane repair, SYT1 is ubiquitously expressed, is located at the plasma membrane, and shares all domains characteristic of animal synaptotagmins (i.e., an N terminus-transmembrane domain and a cytoplasmic region containing two C2 domains with phospholipid binding activities). Our analyses support that membrane trafficking mediated by SYT1 is important for plasma membrane integrity and plant fitness.