Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jochen Bürck is active.

Publication


Featured researches published by Jochen Bürck.


Journal of Biological Chemistry | 2009

A Cell-penetrating Peptide Derived from Human Lactoferrin with Conformation-dependent Uptake Efficiency

Falk Duchardt; Ivo R. Ruttekolk; Wouter P. R. Verdurmen; Hugues Lortat-Jacob; Jochen Bürck; Hansjörg Hufnagel; Rainer Fischer; Maaike van den Heuvel; Dennis W. P. M. Löwik; Geerten W. Vuister; Anne S. Ulrich; Michel De Waard; Roland Brock

The molecular events that contribute to the cellular uptake of cell-penetrating peptides (CPP) are still a matter of intense research. Here, we report on the identification and characterization of a 22-amino acid CPP derived from the human milk protein, lactoferrin. The peptide exhibits a conformation-dependent uptake efficiency that is correlated with efficient binding to heparan sulfate and lipid-induced conformational changes. The peptide contains a disulfide bridge formed by terminal cysteine residues. At concentrations exceeding 10 μm, this peptide undergoes the same rapid entry into the cytoplasm that was described previously for the arginine-rich CPPs nona-arginine and Tat. Cytoplasmic entry strictly depends on the presence of the disulfide bridge. To better understand this conformation dependence, NMR spectroscopy was performed for the free peptide, and CD measurements were performed for free and lipid-bound peptide. In solution, the peptides showed only slight differences in secondary structure, with a predominantly disordered structure both in the presence and absence of the disulfide bridge. In contrast, in complex with large unilamellar vesicles, the conformation of the oxidized and reduced forms of the peptide clearly differed. Moreover, surface plasmon resonance experiments showed that the oxidized form binds to heparan sulfate with a considerably higher affinity than the reduced form. Consistently, membrane binding and cellular uptake of the peptide were reduced when heparan sulfate chains were removed.


Biophysical Journal | 2008

Conformation and Membrane Orientation of Amphiphilic Helical Peptides by Oriented Circular Dichroism

Jochen Bürck; Siegmar Roth; Parvesh Wadhwani; Sergii Afonin; Nathalie Kanithasen; Erik Strandberg; Anne S. Ulrich

Oriented circular dichroism (OCD) was used to characterize and compare in a quantitative manner the secondary structure and concentration dependent realignment of the antimicrobial peptides PGLa and MSI-103, and of the structurally related cell-penetrating peptide MAP in aligned phospholipid bilayers. All these peptides adopt an amphiphilic alpha-helical conformation, and from solid-state NMR analysis they are known to bind to membranes in two distinct orientations depending on their concentration. At low peptide/lipid (P/L) ratio the helices are aligned parallel to membrane surface (S-state), but with increasing concentration they realign to a tilted orientation (T-state), getting immersed into the membrane with an oblique angle supposedly as a result of dimer-formation. In macroscopically aligned liquid crystalline 1,2-dimyristoyl-sn-glycero-3-phosphatidylcholine bilayers the two limiting states are represented by distinct OCD spectra, and all spectra at intermediate peptide concentrations can be described by a linear combination of these two line shapes. The corresponding fraction of molecules occupying the T-state was determined by fitting the intermediate spectra with a superposition of the two extreme line shapes. By plotting this fraction versus 1/(P/L), the threshold P/L* ratio for realignment was extracted for each of the three related peptides. Despite their structural similarity distinctly different thresholds were obtained, namely for MSI-103 realignment starts already at a low P/L of approximately 1:236, for a MAP derivative (using a nonaggregating analog containing a D-amino acid) the transition begins at P/L approximately 1:156, whereas PGLa needs the highest concentration to flip into T-state at P/L approximately 1:85. Analysis of the original MAP sequence (containing only L-amino acids) gave OCD spectra compatible with beta-pleated conformation, suggesting that this peptide starts to aggregate with increasing concentration, unlike the other helical peptides. All these changes in peptide conformation and membrane alignment observed here by OCD seem to be functionally relevant, as they can be correlated with the membrane perturbing activities of the three antimicrobial and cell-penetrating sequences.


Biophysical Journal | 2012

Membrane-Active Peptides and the Clustering of Anionic Lipids

Parvesh Wadhwani; Raquel F. Epand; Nico Heidenreich; Jochen Bürck; Anne S. Ulrich; Richard M. Epand

There is some overlap in the biological activities of cell-penetrating peptides (CPPs) and antimicrobial peptides (AMPs). We compared nine AMPs, seven CPPs, and a fusion peptide with regard to their ability to cluster anionic lipids in a mixture mimicking the cytoplasmic membrane of Gram-negative bacteria, as measured by differential scanning calorimetry. We also studied their bacteriostatic effect on several bacterial strains, and examined their conformational changes upon membrane binding using circular dichroism. A remarkable correlation was found between the net positive charge of the peptides and their capacity to induce anionic lipid clustering, which was independent of their secondary structure. Among the peptides studied, six AMPs and four CPPs were found to have strong anionic lipid clustering activity. These peptides also had bacteriostatic activity against several strains (particularly Gram-negative Escherichia coli) that are sensitive to lipid clustering agents. AMPs and CPPs that did not cluster anionic lipids were not toxic to E. coli. As shown previously for several types of AMPs, anionic lipid clustering likely contributes to the mechanism of antibacterial action of highly cationic CPPs. The same mechanism could explain the escape of CPPs from intracellular endosomes that are enriched with anionic lipids.


Journal of Biological Chemistry | 2012

Structure-activity analysis of the dermcidin-derived peptide DCD 1L, an anionic antimicrobial peptide present in human sweat

Maren Paulmann; Thomas Arnold; Dirk Linke; Suat Özdirekcan; Annika Kopp; Thomas Gutsmann; Hubert Kalbacher; Ines Wanke; Verena J. Schuenemann; Michael Habeck; Jochen Bürck; Anne S. Ulrich; Birgit Schittek

Background: The anionic DCD-1L is an antimicrobial peptide active in human sweat. Results: DCD-1L forms cation stabilized oligomeric ion channels. Conclusion: DCD-1L kills bacteria by forming oligomeric ion channels. Significance: The anionic antimicrobial peptide DCD-1L is optimally adapted to the conditions in human sweat. Dermcidin encodes the anionic amphiphilic peptide DCD-1L, which displays a broad spectrum of antimicrobial activity under conditions resembling those in human sweat. Here, we have investigated its mode of antimicrobial activity. We found that DCD-1L interacts preferentially with negatively charged bacterial phospholipids with a helix axis that is aligned flat on a lipid bilayer surface. Upon interaction with lipid bilayers DCD-1L forms oligomeric complexes that are stabilized by Zn2+. DCD-1L is able to form ion channels in the bacterial membrane, and we propose that Zn2+-induced self-assembly of DCD-1L upon interaction with bacterial lipid bilayers is a prerequisite for ion channel formation. These data allow us for the first time to propose a molecular model for the antimicrobial mechanism of a naturally processed human anionic peptide that is active under the harsh conditions present in human sweat.


Journal of the American Chemical Society | 2012

Self-assembly of flexible β-strands into immobile amyloid-like β-sheets in membranes as revealed by solid-state 19F NMR.

Parvesh Wadhwani; Erik Strandberg; Nico Heidenreich; Jochen Bürck; Susanne Fanghänel; Anne S. Ulrich

The cationic peptide [KIGAKI](3) was designed as an amphiphilic β-strand and serves as a model for β-sheet aggregation in membranes. Here, we have characterized its molecular conformation, membrane alignment, and dynamic behavior using solid-state (19)F NMR. A detailed structure analysis of selectively (19)F-labeled peptides was carried out in oriented DMPC bilayers. It showed a concentration-dependent transition from monomeric β-strands to oligomeric β-sheets. In both states, the rigid (19)F-labeled side chains project straight into the lipid bilayer but they experience very different mobilities. At low peptide-to-lipid ratios ≤1:400, monomeric [KIGAKI](3) swims around freely on the membrane surface and undergoes considerable motional averaging, with essentially uncoupled φ/ψ torsion angles. The flexibility of the peptide backbone in this 2D plane is reminiscent of intrinsically unstructured proteins in 3D. At high concentrations, [KIGAKI](3) self-assembles into immobilized β-sheets, which are untwisted and lie flat on the membrane surface as amyloid-like fibrils. This is the first time the transition of monomeric β-strands into oligomeric β-sheets has been characterized by solid-state NMR in lipid bilayers. It promises to be a valuable approach for studying membrane-induced amyloid formation of many other, clinically relevant peptide systems.


Biochemistry | 2008

Solid-state NMR analysis comparing the designer-made antibiotic MSI-103 with its parent peptide PGLa in lipid bilayers.

Erik Strandberg; Nathalie Kanithasen; Deniz Tiltak; Jochen Bürck; Parvesh Wadhwani; Olaf Zwernemann; Anne S. Ulrich

The amphiphilic alpha-helical peptide (KIAGKIA)3-NH2 (MSI-103) is a designer-made antibiotic, based on the natural sequence of PGLa from Xenopus laevis. Here, we have characterized the concentration-dependent alignment and dynamic behavior of MSI-103 in lipid membranes by solid-state 2H and 19F NMR, using orientational constraints from seven Ala-d3-labeled analogues and five 4-CF3-phenylglycine labels. As previously found for PGLa, MSI-103, too, assumes a flat surface-bound S-state alignment at low peptide concentrations, and it also realigns to a tilted T-state at higher concentrations. For PGLa, the stability of the T-state had been attributed to the specific assembly of antiparallel dimers; hence, it is remarkable that the artificial KIAGKIA repeat sequence can also dimerize in the same way in liquid crystalline lipid bilayers. Oriented circular dichroism analysis shows that for MSI-103 the threshold for realignment from the S-state to the T-state is approximately 3-fold lower than for PGLa (at a peptide-to-lipid ratio of 1:240 in dimyristoylphosphatidylcholine, compared to 1:80). Furthermore, MSI-103 becomes laterally immobilized in the lipid bilayer at a concentration ratio of 1:50, which occurs for PGLa only above 1:20. The superior antimicrobial activity of MSI-103 over PGLa thus appears to correlate with its stronger tendency to realign and self-assemble. The hemolytic activities of MSI-103 and its analogues, on the other hand, are shown here to correlate purely with the respective changes in hydrophobicity.


Langmuir | 2013

Resemblance of electrospun collagen nanofibers to their native structure.

Jochen Bürck; Stefan Heissler; Udo Geckle; Mohammad Fotouhi Ardakani; Reinhard Schneider; Anne S. Ulrich; Murat Kazanci

Electrospinning is a promising method to mimic the native structure of the extracellular matrix. Collagen is the material of choice, since it is a natural fibrous structural protein. It is an open question how much the spinning process preserves or alters the native structure of collagen. There are conflicting results in the literature, mainly due to the different solvent systems in use and due to the fact that gelatin is employed as a reference state for the completely unfolded state of collagen in calculations. Here we used circular dichroism (CD) and Fourier-transform infrared spectroscopy (FTIR) to investigate the structure of regenerated collagen samples and scanning electron microscopy (SEM) and transmission electron microscopy (TEM) to illuminate the electrospun nanofibers. Collagen is mostly composed of folded and unfolded structures with different ratios, depending on the applied temperature. Therefore, CD spectra were acquired as a temperature series during thermal denaturation of native calf skin collagen type I and used as a reference basis to extract the degree of collagen folding in the regenerated electrospun samples. We discussed three different approaches to determine the folded fraction of collagen, based on CD spectra of collagen from 185 to 260 nm, since it would not be sufficient to obtain simply the fraction of folded structure θ from the ellipticity at a single wavelength of 221.5 nm. We demonstrated that collagen almost completely unfolded in fluorinated solvents and partially preserved its folded structure θ in HAc/EtOH. However, during the spinning process it refolded and the PP-II fraction increased. Nevertheless, it did not exceed 42% as deduced from the different secondary structure evaluation methods, discussed here. PP-II fractions in electrospun collagen nanofibers were almost same, being independent from the initial solvent systems which were used to solubilize the collagen for electrospinning process.


Journal of Biological Chemistry | 2012

Hydrophobic Matching Controls the Tilt and Stability of the Dimeric Platelet-derived Growth Factor Receptor (PDGFR) β Transmembrane Segment

Claudia Muhle-Goll; Silke Hoffmann; Sergii Afonin; Stephan L. Grage; Anton A. Polyansky; Dirk Windisch; Marcel Zeitler; Jochen Bürck; Anne S. Ulrich

Background: Dimerization regulates activation of PDGF receptor in signal transduction. Results: The transmembrane segment of PDGFR forms a left-handed helical dimer, which becomes more tilted and less stable in model membranes with decreasing lipid acyl chain lengths. Conclusion: The membrane thickness controls the ability of the transmembrane segments to dimerize. Significance: Receptor dimerization and activation in vivo may require relocation to thick lipid rafts. The platelet-derived growth factor receptor β is a member of the cell surface receptor tyrosine kinase family and dimerizes upon activation. We determined the structure of the transmembrane segment in dodecylphosphocholine micelles by liquid-state NMR and found that it forms a stable left-handed helical dimer. Solid-state NMR and oriented circular dichroism were used to measure the tilt angle of the helical segments in macroscopically aligned model membranes with different acyl chain lengths. Both methods showed that decreasing bilayer thickness (DEPC-POPC-DMPC) led to an increase in the helix tilt angle from 10° to 30° with respect to the bilayer normal. At the same time, reconstitution of the comparatively long hydrophobic segment became less effective, eventually resulting in complete protein aggregation in the short-chain lipid DLPC. Unrestrained molecular dynamics simulations of the dimer were carried out in explicit lipid bilayers (DEPC, POPC, DMPC, sphingomyelin), confirming the observed dependence of the helix tilt angle on bilayer thickness. Notably, molecular dynamics revealed that the left-handed dimer gets tilted en bloc, whereas conformational transitions to alternative (e.g. right-handed dimeric) states were not supported. The experimental data along with the simulation results demonstrate a pronounced interplay between the platelet-directed growth factor receptor β transmembrane segment and the bilayer thickness. The effect of hydrophobic mismatch might play a key role in the redistribution and activation of the receptor within different lipid microdomains of the plasma membrane in vivo.


Journal of the American Chemical Society | 2012

Anisotropic Organization and Microscopic Manipulation of Self-Assembling Synthetic Porphyrin Microrods That Mimic Chlorosomes: Bacterial Light-Harvesting Systems

Cyril Chappaz-Gillot; Peter Marek; Bruno Blaive; Gabriel Canard; Jochen Bürck; Győző Garab; Horst Hahn; Tamás Jávorfi; Lóránd Kelemen; Ralph Krupke; Dennis Mössinger; Pál Ormos; Chilla Malla Reddy; Christian Roussel; Gábor Steinbach; Milán Szabó; Anne S. Ulrich; Nicolas Vanthuyne; Aravind Vijayaraghavan; Anita Zupcanova; Teodor Silviu Balaban

Being able to control in time and space the positioning, orientation, movement, and sense of rotation of nano- to microscale objects is currently an active research area in nanoscience, having diverse nanotechnological applications. In this paper, we demonstrate unprecedented control and maneuvering of rod-shaped or tubular nanostructures with high aspect ratios which are formed by self-assembling synthetic porphyrins. The self-assembly algorithm, encoded by appended chemical-recognition groups on the periphery of these porphyrins, is the same as the one operating for chlorosomal bacteriochlorophylls (BChls). Chlorosomes, rod-shaped organelles with relatively long-range molecular order, are the most efficient naturally occurring light-harvesting systems. They are used by green photosynthetic bacteria to trap visible and infrared light of minute intensities even at great depths, e.g., 100 m below water surface or in volcanic vents in the absence of solar radiation. In contrast to most other natural light-harvesting systems, the chlorosomal antennae are devoid of a protein scaffold to orient the BChls; thus, they are an attractive goal for mimicry by synthetic chemists, who are able to engineer more robust chromophores to self-assemble. Functional devices with environmentally friendly chromophores-which should be able to act as photosensitizers within hybrid solar cells, leading to high photon-to-current conversion efficiencies even under low illumination conditions-have yet to be fabricated. The orderly manner in which the BChls and their synthetic counterparts self-assemble imparts strong diamagnetic and optical anisotropies and flow/shear characteristics to their nanostructured assemblies, allowing them to be manipulated by electrical, magnetic, or tribomechanical forces.


Antimicrobial Agents and Chemotherapy | 2010

Short cationic antimicrobial peptides interact with ATP.

Kai Hilpert; Brett McLeod; Jessie Z. Yu; Melissa Elliott; Marina Rautenbach; Serge Ruden; Jochen Bürck; Claudia Muhle-Goll; Anne S. Ulrich; Sandro Keller; Robert E. W. Hancock

ABSTRACT The mode of action of short, nonhelical antimicrobial peptides is still not well understood. Here we show that these peptides interact with ATP and directly inhibit the actions of certain ATP-dependent enzymes, such as firefly luciferase, DnaK, and DNA polymerase. α-Helical and planar or circular antimicrobial peptides did not show such interaction with ATP.

Collaboration


Dive into the Jochen Bürck's collaboration.

Top Co-Authors

Avatar

Anne S. Ulrich

Karlsruhe Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Parvesh Wadhwani

Karlsruhe Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Johannes Reichert

Karlsruhe Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Erik Strandberg

Karlsruhe Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Erik Strandberg

Karlsruhe Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Sergii Afonin

Karlsruhe Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Dirk Windisch

Karlsruhe Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nico Heidenreich

Karlsruhe Institute of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge