Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jochen Zimmer is active.

Publication


Featured researches published by Jochen Zimmer.


Nature | 2012

Crystallographic snapshot of cellulose synthesis and membrane translocation

Jacob L.W. Morgan; Joanna Strumillo; Jochen Zimmer

Cellulose, the most abundant biological macromolecule, is an extracellular, linear polymer of glucose molecules. It represents an essential component of plant cell walls but is also found in algae and bacteria. In bacteria, cellulose production frequently correlates with the formation of biofilms, a sessile, multicellular growth form. Cellulose synthesis and transport across the inner bacterial membrane is mediated by a complex of the membrane-integrated catalytic BcsA subunit and the membrane-anchored, periplasmic BcsB protein. Here we present the crystal structure of a complex of BcsA and BcsB from Rhodobacter sphaeroides containing a translocating polysaccharide. The structure of the BcsA–BcsB translocation intermediate reveals the architecture of the cellulose synthase, demonstrates how BcsA forms a cellulose-conducting channel, and suggests a model for the coupling of cellulose synthesis and translocation in which the nascent polysaccharide is extended by one glucose molecule at a time.


Nature Structural & Molecular Biology | 2014

Mechanism of activation of bacterial cellulose synthase by cyclic di-GMP

Jacob L.W. Morgan; Joshua T. McNamara; Jochen Zimmer

The bacterial signaling molecule cyclic di-GMP (c-di-GMP) stimulates the synthesis of bacterial cellulose, which is frequently found in biofilms. Bacterial cellulose is synthesized and translocated across the inner membrane by a complex of cellulose synthase BcsA and BcsB subunits. Here we present crystal structures of the c-di-GMP–activated BcsA–BcsB complex. The structures reveal that c-di-GMP releases an autoinhibited state of the enzyme by breaking a salt bridge that otherwise tethers a conserved gating loop that controls access to and substrate coordination at the active site. Disrupting the salt bridge by mutagenesis generates a constitutively active cellulose synthase. Additionally, the c-di-GMP–activated BcsA–BcsB complex contains a nascent cellulose polymer whose terminal glucose unit rests at a new location above BcsAs active site and is positioned for catalysis. Our mechanistic insights indicate how c-di-GMP allosterically modulates enzymatic functions.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Tertiary model of a plant cellulose synthase

Latsavongsakda Sethaphong; Candace H. Haigler; James D. Kubicki; Jochen Zimmer; Dario Bonetta; Seth DeBolt; Yaroslava G. Yingling

A 3D atomistic model of a plant cellulose synthase (CESA) has remained elusive despite over forty years of experimental effort. Here, we report a computationally predicted 3D structure of 506 amino acids of cotton CESA within the cytosolic region. Comparison of the predicted plant CESA structure with the solved structure of a bacterial cellulose-synthesizing protein validates the overall fold of the modeled glycosyltransferase (GT) domain. The coaligned plant and bacterial GT domains share a six-stranded β-sheet, five α-helices, and conserved motifs similar to those required for catalysis in other GT-2 glycosyltransferases. Extending beyond the cross-kingdom similarities related to cellulose polymerization, the predicted structure of cotton CESA reveals that plant-specific modules (plant-conserved region and class-specific region) fold into distinct subdomains on the periphery of the catalytic region. Computational results support the importance of the plant-conserved region and/or class-specific region in CESA oligomerization to form the multimeric cellulose–synthesis complexes that are characteristic of plants. Relatively high sequence conservation between plant CESAs allowed mapping of known mutations and two previously undescribed mutations that perturb cellulose synthesis in Arabidopsis thaliana to their analogous positions in the modeled structure. Most of these mutation sites are near the predicted catalytic region, and the confluence of other mutation sites supports the existence of previously undefined functional nodes within the catalytic core of CESA. Overall, the predicted tertiary structure provides a platform for the biochemical engineering of plant CESAs.


Proceedings of the National Academy of Sciences of the United States of America | 2013

BcsA and BcsB form the catalytically active core of bacterial cellulose synthase sufficient for in vitro cellulose synthesis

Okako Omadjela; Adishesh K. Narahari; Joanna Strumillo; Hugo Mélida; Olga Mazur; Vincent Bulone; Jochen Zimmer

Significance Cellulose is the most abundant biopolymer on Earth, primarily formed by vascular plants, but also by some bacteria. Bacterial extracellular polysaccharides, such as cellulose and alginate, are an important component of biofilms, which are multicellular, usually sessile, aggregates of bacteria. Biofilms exhibit a greater resistance to antimicrobial treatments compared with isolated bacteria and thus are a particular concern to human health. Cellulose synthases synthesize cellulose by polymerizing UDP-activated glucose and transport the growing polymer across the cell membrane during its synthesis. Despite numerous attempts, reconstituting cellulose synthesis in vitro from purified components has been unsuccessful. Here we present the complete reconstitution of bacterial cellulose synthesis from components from Rhodobacter sphaeroides, thereby establishing an experimental basis for cellulose and biofilm research. Cellulose is a linear extracellular polysaccharide. It is synthesized by membrane-embedded glycosyltransferases that processively polymerize UDP-activated glucose. Polymer synthesis is coupled to membrane translocation through a channel formed by the cellulose synthase. Although eukaryotic cellulose synthases function in macromolecular complexes containing several different enzyme isoforms, prokaryotic synthases associate with additional subunits to bridge the periplasm and the outer membrane. In bacteria, cellulose synthesis and translocation is catalyzed by the inner membrane-associated bacterial cellulose synthase (Bcs)A and BcsB subunits. Similar to alginate and poly-β-1,6 N-acetylglucosamine, bacterial cellulose is implicated in the formation of sessile bacterial communities, termed biofilms, and its synthesis is likewise stimulated by cyclic-di-GMP. Biochemical studies of exopolysaccharide synthesis are hampered by difficulties in purifying and reconstituting functional enzymes. We demonstrate robust in vitro cellulose synthesis reconstituted from purified BcsA and BcsB proteins from Rhodobacter sphaeroides. Although BcsA is the catalytically active subunit, the membrane-anchored BcsB subunit is essential for catalysis. The purified BcsA-B complex produces cellulose chains of a degree of polymerization in the range 200–300. Catalytic activity critically depends on the presence of the allosteric activator cyclic-di-GMP, but is independent of lipid-linked reactants. Our data reveal feedback inhibition of cellulose synthase by UDP but not by the accumulating cellulose polymer and highlight the strict substrate specificity of cellulose synthase for UDP-glucose. A truncation analysis of BcsB localizes the region required for activity of BcsA within its C-terminal membrane-associated domain. The reconstituted reaction provides a foundation for the synthesis of biofilm exopolysaccharides, as well as its activation by cyclic-di-GMP.


Annual Review of Biochemistry | 2015

A Molecular Description of Cellulose Biosynthesis

Joshua T. McNamara; Jacob L.W. Morgan; Jochen Zimmer

Cellulose is the most abundant biopolymer on Earth, and certain organisms from bacteria to plants and animals synthesize cellulose as an extracellular polymer for various biological functions. Humans have used cellulose for millennia as a material and an energy source, and the advent of a lignocellulosic fuel industry will elevate it to the primary carbon source for the burgeoning renewable energy sector. Despite the biological and societal importance of cellulose, the molecular mechanism by which it is synthesized is now only beginning to emerge. On the basis of recent advances in structural and molecular biology on bacterial cellulose synthases, we review emerging concepts of how the enzymes polymerize glucose molecules, how the nascent polymer is transported across the plasma membrane, and how bacterial cellulose biosynthesis is regulated during biofilm formation. Additionally, we review evolutionary commonalities and differences between cellulose synthases that modulate the nature of the cellulose product formed.


Journal of Molecular Biology | 2012

The hyaluronan synthase catalyzes the synthesis and membrane translocation of hyaluronan.

Caitlin Hubbard; Joshua T. McNamara; Caleigh Azumaya; Mehul S. Patel; Jochen Zimmer

Hyaluronan (HA), an extracellular linear polysaccharide of alternating N-acetyl-glucosamine and glucuronic acid residues, is ubiquitously expressed in vertebrates, where it affects a broad spectrum of physiological processes, including cell adhesion, migration and differentiation. The HA polymer is synthesized on the cytosolic side of the cell membrane by the membrane-embedded hyaluronan synthase (HAS). However, the process by which the extremely hydrophilic HA polymer is translocated across the membrane is unknown to date. The bacterial HAS from Streptococcus equisimilis (Se) shares a similar transmembrane topology and significant sequence identity with human HASs and likely synthesizes HA by the same mechanism. We demonstrate that the Se-HAS is both necessary and sufficient to translocate HA in a reaction that is tightly coupled to HA elongation. The purified Se-HAS is reconstituted into proteoliposomes (PLs) where it synthesizes and translocates HA. In vitro synthesized, high-molecular-weight HA remains tightly associated with the intact PLs in sedimentation experiments. Most importantly, the newly formed HA is protected from enzymatic degradation by hyaluronidase unless the PLs are solubilized with detergent, thereby demonstrating that HA is translocated into the lumen of the vesicle. In addition, we show that HA synthesis and translocation are spatially coupled events, which allow HA synthesis even in the presence of a large excess of HA-degrading enzyme. The coupled synthesis and membrane translocation of a biopolymer represents a novel membrane translocation mechanism and is likely applicable to the synthesis of some of the most abundant biopolymers, including chitin and cellulose.


Trends in Plant Science | 2014

Cellulose synthases: new insights from crystallography and modeling

Erin Slabaugh; Jonathan K. Davis; Candace H. Haigler; Yaroslava G. Yingling; Jochen Zimmer

Detailed information about the structure and biochemical mechanisms of cellulose synthase (CelS) proteins remained elusive until a complex containing the catalytic subunit (BcsA) of CelS from Rhodobacter sphaeroides was crystalized. Additionally, a 3D structure of most of the cytosolic domain of a plant CelS (GhCESA1 from cotton, Gossypium hirsutum) was produced by computational modeling. This predicted structure contributes to our understanding of how plant CelS proteins may be similar and different as compared with BcsA. In this review, we highlight how these structures impact our understanding of the synthesis of cellulose and other extracellular polysaccharides. We show how the structures can be used to generate hypotheses for experiments testing mechanisms of glucan synthesis and translocation in plant CelS.


Journal of Biological Chemistry | 2011

Apo- and Cellopentaose-bound Structures of the Bacterial Cellulose Synthase Subunit BcsZ

Olga Mazur; Jochen Zimmer

Cellulose, a very abundant extracellular polysaccharide, is synthesized in a finely tuned process that involves the activity of glycosyl-transferases and hydrolases. The cellulose microfibril consists of bundles of linear β-1,4-glucan chains that are synthesized inside the cell; however, the mechanism by which these polymers traverse the cell membrane is currently unknown. In Gram-negative bacteria, the cellulose synthase complex forms a trans-envelope complex consisting of at least four subunits. Although three of these subunits account for the synthesis and translocation of the polysaccharide, the fourth subunit, BcsZ, is a periplasmic protein with endo-β-1,4-glucanase activity. BcsZ belongs to family eight of glycosyl-hydrolases, and its activity is required for optimal synthesis and membrane translocation of cellulose. In this study we report two crystal structures of BcsZ from Escherichia coli. One structure shows the wild-type enzyme in its apo form, and the second structure is for a catalytically inactive mutant of BcsZ in complex with the substrate cellopentaose. The structures demonstrate that BcsZ adopts an (α/α)6-barrel fold and that it binds four glucan moieties of cellopentaose via highly conserved residues exclusively on the nonreducing side of its catalytic center. Thus, the BcsZ-cellopentaose structure most likely represents a posthydrolysis state in which the newly formed nonreducing end has already left the substrate binding pocket while the enzyme remains attached to the truncated polysaccharide chain. We further show that BcsZ efficiently degrades β-1,4-glucans in in vitro cellulase assays with carboxymethyl-cellulose as substrate.


Nature | 2016

Observing cellulose biosynthesis and membrane translocation in crystallo

Jacob L.W. Morgan; Joshua T. McNamara; Michael B. Fischer; Jamie R. Rich; Hong-Ming Chen; Stephen G. Withers; Jochen Zimmer

Many biopolymers, including polysaccharides, must be translocated across at least one membrane to reach their site of biological function. Cellulose is a linear glucose polymer synthesized and secreted by a membrane-integrated cellulose synthase. Here, in crystallo enzymology with the catalytically active bacterial cellulose synthase BcsA–BcsB complex reveals structural snapshots of a complete cellulose biosynthesis cycle, from substrate binding to polymer translocation. Substrate- and product-bound structures of BcsA provide the basis for substrate recognition and demonstrate the stepwise elongation of cellulose. Furthermore, the structural snapshots show that BcsA translocates cellulose via a ratcheting mechanism involving a ‘finger helix’ that contacts the polymer’s terminal glucose. Cooperating with BcsA’s gating loop, the finger helix moves ‘up’ and ‘down’ in response to substrate binding and polymer elongation, respectively, thereby pushing the elongated polymer into BcsA’s transmembrane channel. This mechanism is validated experimentally by tethering BcsA’s finger helix, which inhibits polymer translocation but not elongation.


Plant Physiology | 2015

Evolutionary Dynamics of the Cellulose Synthase Gene Superfamily in Grasses

Julian G. Schwerdt; Katrin MacKenzie; Frank Wright; Daniel P. Oehme; John Wagner; Andrew J. Harvey; Neil J. Shirley; Rachel A. Burton; Miriam Schreiber; Claire Halpin; Jochen Zimmer; David Marshall; Robbie Waugh; Geoffrey B. Fincher

Variable selection pressure in the cellulose synthase gene superfamily reveals positions of amino acids under selection and unexpected evolutionary histories for key genes. Phylogenetic analyses of cellulose synthase (CesA) and cellulose synthase-like (Csl) families from the cellulose synthase gene superfamily were used to reconstruct their evolutionary origins and selection histories. Counterintuitively, genes encoding primary cell wall CesAs have undergone extensive expansion and diversification following an ancestral duplication from a secondary cell wall-associated CesA. Selection pressure across entire CesA and Csl clades appears to be low, but this conceals considerable variation within individual clades. Genes in the CslF clade are of particular interest because some mediate the synthesis of (1,3;1,4)-β-glucan, a polysaccharide characteristic of the evolutionarily successful grasses that is not widely distributed elsewhere in the plant kingdom. The phylogeny suggests that duplication of either CslF6 and/or CslF7 produced the ancestor of a highly conserved cluster of CslF genes that remain located in syntenic regions of all the grass genomes examined. A CslF6-specific insert encoding approximately 55 amino acid residues has subsequently been incorporated into the gene, or possibly lost from other CslFs, and the CslF7 clade has undergone a significant long-term shift in selection pressure. Homology modeling and molecular dynamics of the CslF6 protein were used to define the three-dimensional dispositions of individual amino acids that are subject to strong ongoing selection, together with the position of the conserved 55-amino acid insert that is known to influence the amounts and fine structures of (1,3;1,4)-β-glucans synthesized. These wall polysaccharides are attracting renewed interest because of their central roles as sources of dietary fiber in human health and for the generation of renewable liquid biofuels.

Collaboration


Dive into the Jochen Zimmer's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

B. Tracy Nixon

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

Manish Kumar

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

Sung Hyun Cho

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Cassandra Maranas

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

Chao Fang

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge