Jody Manischewitz
Center for Biologics Evaluation and Research
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jody Manischewitz.
PLOS Medicine | 2009
Surender Khurana; Amorsolo L. Suguitan; Yonaira Rivera; Cameron P. Simmons; Antonio Lanzavecchia; Federica Sallusto; Jody Manischewitz; Lisa R. King; Kanta Subbarao; Hana Golding
Using whole-genome-fragment phage display libraries, Hana Golding and colleagues identify the viral epitopes recognized by serum antibodies in humans who have recovered from infection with H5N1 avian influenza.
Nature Medicine | 2005
Yvette Edghill-Smith; Hana Golding; Jody Manischewitz; Lisa R. King; Dorothy E. Scott; Mike Bray; Aysegul Nalca; Jay W. Hooper; Chris A Whitehouse; Joern E. Schmitz; Keith A. Reimann; Genoveffa Franchini
Vaccination with live vaccinia virus affords long-lasting protection against variola virus, the agent of smallpox. Its mode of protection in humans, however, has not been clearly defined. Here we report that vaccinia-specific B-cell responses are essential for protection of macaques from monkeypox virus, a variola virus ortholog. Antibody-mediated depletion of B cells, but not CD4+ or CD8+ T cells, abrogated vaccine-induced protection from a lethal intravenous challenge with monkeypox virus. In addition, passive transfer of human vaccinia-neutralizing antibodies protected nonimmunized macaques from severe disease. Thus, vaccines able to induce long-lasting protective antibody responses may constitute realistic alternatives to the currently available smallpox vaccine (Dryvax).
Journal of Virology | 2002
Hana Golding; Marina Zaitseva; Eve de Rosny; Lisa R. King; Jody Manischewitz; Igor A. Sidorov; Miroslaw K. Gorny; Susan Zolla-Pazner; Dimiter S. Dimitrov; Carol D. Weiss
ABSTRACT Human immunodeficiency virus type 1 (HIV-1) entry requires conformational changes in the transmembrane subunit (gp41) of the envelope glycoprotein (Env) involving transient fusion intermediates that contain exposed coiled-coil (prehairpin) and six-helix bundle structures. We investigated the HIV-1 entry mechanism and the potential of antibodies targeting fusion intermediates to block Env-mediated membrane fusion. Suboptimal temperature (31.5°C) was used to prolong fusion intermediates as monitored by confocal microscopy. After transfer to 37°C, these fusion intermediates progressed to syncytium formation with enhanced kinetics compared with effector-target (E/T) cell mixtures that were incubated only at 37°C. gp41 peptides DP-178, DP-107, and IQN17 blocked fusion more efficiently (5- to 10-fold-lower 50% inhibitory dose values) when added to E/T cells at the suboptimal temperature prior to transfer to 37°C. Rabbit antibodies against peptides modeling the N-heptad repeat or the six-helix bundle of gp41 blocked fusion and viral infection at 37°C only if preincubated with E/T cells at the suboptimal temperature. Similar fusion inhibition was observed with human six-helix bundle-specific monoclonal antibodies. Our data demonstrate that antibodies targeting gp41 fusion intermediates are able to bind to gp41 and arrest fusion. They also indicate that six-helix bundles can form prior to fusion and that the lag time before fusion occurs may include the time needed to accumulate preformed six-helix bundles at the fusion site.
Science Translational Medicine | 2013
Surender Khurana; Crystal L. Loving; Jody Manischewitz; Lisa R. King; Phillip C. Gauger; Jamie N. Henningson; Amy L. Vincent; Hana Golding
Heterologous influenza A vaccination–induced antibodies correlated with vaccine-associated enhanced respiratory disease. The (Mis)match Game Even the most beneficial things—like vaccines—sometimes have a downside. Learning what causes the downside is critical for avoiding it. In the case of viral vaccines, there have been some reports of rare vaccine-induced disease enhancement—for example, vaccine-associated enhanced respiratory disease (VAERD) for influenza. Khurana et al. now report that mismatched strains of the same subtype of influenza may lead to VAERD in pigs. The authors vaccinated pigs with whole inactivated H1N2 influenza virus. These pigs had enhanced pneumonia and disease after infection with another strain—pH1N1. Looking more closely, the authors found that the immune sera from the H1N2-vaccinated pigs contained high titers of cross-reactive hemagglutinin antibodies. These antibodies actually enhanced pH1N1 infection in cell culture by promoting virus membrane fusion activity, and this enhanced fusion correlated with lung pathology. This mechanism of VAERD should be considered when devising strategies to devise a universal flu vaccine. Vaccine-induced disease enhancement has been described in connection with several viral vaccines in animal models and in humans. We investigated a swine model to evaluate mismatched influenza vaccine-associated enhanced respiratory disease (VAERD) after pH1N1 infection. Vaccinating pigs with whole inactivated H1N2 (human-like) virus vaccine (WIV-H1N2) resulted in enhanced pneumonia and disease after pH1N1 infection. WIV-H1N2 immune sera contained high titers of cross-reactive anti-pH1N1 hemagglutinin (HA) antibodies that bound exclusively to the HA2 domain but not to the HA1 globular head. No hemagglutination inhibition titers against pH1N1 (challenge virus) were measured. Epitope mapping using phage display library identified the immunodominant epitope recognized by WIV-H1N2 immune sera as amino acids 32 to 77 of pH1N1-HA2 domain, close to the fusion peptide. These cross-reactive anti-HA2 antibodies enhanced pH1N1 infection of Madin-Darby canine kidney cells by promoting virus membrane fusion activity. The enhanced fusion activity correlated with lung pathology in pigs. This study suggests a role for fusion-enhancing anti-HA2 antibodies in VAERD, in the absence of receptor-blocking virus-neutralizing antibodies. These findings should be considered during the evaluation of universal influenza vaccines designed to elicit HA2 stem-targeting antibodies.
Journal of Virology | 2009
Dominick J. Laddy; Jian Yan; Amir S. Khan; Hanne Andersen; Amanda Cohn; Jack Greenhouse; Mark G. Lewis; Jody Manischewitz; Lisa R. King; Hana Golding; Ruxandra Draghia-Akli; David B. Weiner
ABSTRACT Avian influenza highlights the need for novel vaccination techniques that would allow for the rapid design and production of safe and effective vaccines. An ideal platform would be capable of inducing both protective antibodies and potent cellular immune responses. These potential advantages of DNA vaccines remain unrealized due to a lack of efficacy in large animal studies and in human trials. Questions remain regarding the potential utility of cellular immune responses against influenza virus in primates. In this study, by construct optimization and in vivo electroporation of synthetic DNA-encoded antigens, we observed the induction of cross-reactive cellular and humoral immune responses individually capable of providing protection from influenza virus infection in the rhesus macaque. These studies advance the DNA vaccine field and provide a novel, more tolerable vaccine with broad immunogenicity to avian influenza virus. This approach appears important for further investigation, including studies with humans.
Journal of Immunology | 2006
Jean-Michel Heraud; Yvette Edghill-Smith; Victor I. Ayala; Irene Kalisz; Janie Parrino; V. S. Kalyanaraman; Jody Manischewitz; Lisa R. King; Anna Hryniewicz; Christopher J. Trindade; Meredith Hassett; Wen-Po Tsai; David Venzon; Aysegul Nalca; Monica Vaccari; Peter Silvera; Mike Bray; Barney S. Graham; Hana Golding; Jay W. Hooper; Genoveffa Franchini
The smallpox vaccine Dryvax, a live vaccinia virus (VACV), protects against smallpox and monkeypox, but is contraindicated in immunocompromised individuals. Because Abs to VACV mediate protection, a live virus vaccine could be substituted by a safe subunit protein-based vaccine able to induce a protective Ab response. We immunized rhesus macaques with plasmid DNA encoding the monkeypox orthologs of the VACV L1R, A27L, A33R, and B5R proteins by the intradermal and i.m. routes, either alone or in combination with the equivalent recombinant proteins produced in Escherichia coli. Animals that received only DNA failed to produce high titer Abs, developed innumerable skin lesions after challenge, and died in a manner similar to placebo controls. By contrast, the animals vaccinated with proteins developed moderate to severe disease (20–155 skin lesions) but survived. Importantly, those immunized with DNA and boosted with proteins had mild disease with 15 or fewer lesions that resolved within days. DNA/protein immunization elicited Th responses and binding Ab titers to all four proteins that correlated negatively with the total lesion number. The sera of the immunized macaques recognized a limited number of linear B cell epitopes that are highly conserved among orthopoxviruses. Their identification may guide future efforts to develop simpler, safer, and more effective vaccines for monkeypox and smallpox.
Journal of Virology | 2011
Surender Khurana; Jian Wu; Nitin Verma; Swati Verma; Ramadevi Raghunandan; Jody Manischewitz; Lisa R. King; Eloi Kpamegan; Steven Pincus; Gale Smith; Gregory M. Glenn; Hana Golding
ABSTRACT Transmission of pathogenic avian influenza viruses (AIV) from wild birds to domestic poultry and humans is continuing in multiple countries around the world. In preparation for a potential AIV pandemic, multiple vaccine candidates are under development. In the case of H5N1 AIV, a clear shift in transmission from clade 1 to clade 2 viruses occurred in recent years. The virus-like particle (VLP) represents an economical approach to pandemic vaccine development. In the current study, we evaluated the humoral immune response in humans vaccinated with H5N1 A/Indonesia/05/2005 (clade 2.1) VLP vaccine manufactured in Sf9 insect cells. The VLPs were comprised of the influenza virus hemagglutinin (HA), neuraminidase (NA), and matrix 1 (M1) proteins. In an FDA-approved phase I/II human clinical study, two doses of H5N1 VLPs at 15, 45, or 90 μg HA/dose resulted in seroconversion and production of functional antibodies. Moreover, cross-reactivity against other clade 2 subtypes was demonstrated using virus neutralization assays. H5N1 whole-genome fragment phage display libraries (GFPDL) were used to elucidate the antibody epitope repertoire in postvaccination human sera. Diverse epitopes in HA1/HA2 and NA were recognized by postvaccination sera from the two high-dose groups, including large segments spanning the HA1 receptor binding domain. Importantly, the vaccine elicited sera that preferentially bound to an oligomeric form of recombinant HA1 compared with monomeric HA1. The oligomeric/monomeric HA1 binding ratios of the sera correlated with the virus neutralizing titers. Additionally, the two high-dose VLP vaccine groups generated NA-inhibiting antibodies that were associated with binding to a C-terminal epitope close to the sialic acid binding site. These findings represent the first report describing the quality of the antibody responses in humans following AIV VLP immunization and support further development of such vaccines against emerging influenza virus strains.
PLOS ONE | 2010
Surender Khurana; Swati Verma; Nitin Verma; Corey J. Crevar; Donald M. Carter; Jody Manischewitz; Lisa R. King; Ted M. Ross; Hana Golding
Background In the face of impending influenza pandemic, a rapid vaccine production and mass vaccination is the most effective approach to prevent the large scale mortality and morbidity that was associated with the 1918 “Spanish Flu”. The traditional process of influenza vaccine production in eggs is time consuming and may not meet the demands of rapid global vaccination required to curtail influenza pandemic. Methodology/Principal Findings Recombinant technology can be used to express the hemagglutinin (HA) of the emerging new influenza strain in a variety of systems including mammalian, insect, and bacterial cells. In this study, two forms of HA proteins derived from the currently circulating novel H1N1 A/California/07/2009 virus, HA1 (1–330) and HA (1–480), were expressed and purified from E. coli under controlled redox refolding conditions that favoured proper protein folding. However, only the recombinant HA1 (1–330) protein formed oligomers, including functional trimers that bound receptor and caused agglutination of human red blood cells. These proteins were used to vaccinate ferrets prior to challenge with the A/California/07/2009 virus. Both proteins induced neutralizing antibodies, and reduced viral loads in nasal washes. However, the HA1 (1–330) protein that had higher content of multimeric forms provided better protection from fever and weight loss at a lower vaccine dose compared with HA (1–480). Protein yield for the HA1 (1–330) ranged around 40 mg/Liter, while the HA (1–480) yield was 0.4–0.8 mg/Liter. Conclusions/Significance This is the first study that describes production in bacterial system of properly folded functional globular HA1 domain trimers, lacking the HA2 transmembrane protein, that elicit potent neutralizing antibody responses following vaccination and protect ferrets from in vivo challenge. The combination of bacterial expression system with established quality control methods could provide a mechanism for rapid large scale production of influenza vaccines in the face of influenza pandemic threat.
Journal of Virology | 2011
Surender Khurana; Swati Verma; Nitin Verma; Corey J. Crevar; Donald M. Carter; Jody Manischewitz; Lisa R. King; Ted M. Ross; Hana Golding
ABSTRACT The impending influenza virus pandemic requires global vaccination to prevent large-scale mortality and morbidity, but traditional influenza virus vaccine production is too slow for rapid responses. We have developed bacterial systems for expression and purification of properly folded functional hemagglutinin as a rapid response to emerging pandemic strains. A recombinant H5N1 (A/Vietnam/1203/2004) hemagglutinin globular domain (HA1) was produced in Escherichia coli under controlled redox refolding conditions. Importantly, the properly folded HA1(1-320), i.e., HA1 lacking amino acids 321 to 330, contained ≥75% functional oligomers without addition of foreign oligomerization sequence. Site-directed mutagenesis mapped the oligomerization signal to the HA1 N-terminal Ile-Cys-Ile residues at positions 3 to 5. The purified HA1 oligomers (but not monomers) bound fetuin and agglutinated red blood cells. Upon immunization of rabbits, the oligomeric HA1(1-320) elicited potent neutralizing antibodies against homologous and heterologous H5N1 viruses more rapidly than HA1(28-320) containing only monomers. Ferrets vaccinated with oligomeric HA1 (but not monomeric HA1 with the N terminus deleted) at 15 and 3 μg/dose were fully protected from lethality and weight loss after challenge with homologous H5N1 (A/Vietnam/1203/2004, clade 1) virus, as well as heterologous clade 2.2 H5N1 (A/WooperSwan/Mongolia/244/2005) virus. Protection was associated with a significant reduction in viral loads in the nasal washes of homologous and heterologous virus challenged ferrets. This is the first study that describes the presence of an N-terminal oligomerization sequence in the globular domain of influenza virus hemagglutinin. Our findings suggest that functional oligomeric rHA1-based vaccines can be produced efficiently in bacterial systems and can be easily upscaled in response to a pandemic influenza virus threat.
The Journal of Infectious Diseases | 2005
Yvette Edghill Smith; Mike Bray; Chris A. Whitehouse; David Miller; Eric M. Mucker; Jody Manischewitz; Lisa R. King; Marjorie Robert Guroff; Anna Hryniewicz; David Venzon; Clement A. Meseda; Jerry P. Weir; Aysegul Nalca; Virginia Livingston; Jay Wells; Mark G. Lewis; John W. Huggins; Susan H. Zwiers; Hana Golding; Genoveffa Franchini
It is unknown whether smallpox vaccination would protect human immunodeficiency virus type 1 (HIV-1)-infected individuals, because helper CD4(+) cells, the targets of HIV-1 infection, are necessary for the induction of both adaptive CD8(+) cell and B cell responses. We have addressed this question in macaques and have demonstrated that, although smallpox vaccination is safe in immunodeficient macaques when it is preceded by immunization with highly attenuated vaccinia strains, the macaques were not protected against lethal monkeypox virus challenge if their CD4(+) cell count was <300 cells/mm(3). The lack of protection appeared to be associated with a defect in vaccinia-specific immunoglobulin (Ig) switching from IgM to IgG. Thus, vaccination strategies that bypass CD4(+) cell help are needed to elicit IgG antibodies with high affinity and adequate tissue distribution and to restore protection against smallpox in severely immunocompromised individuals.