Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mike Bray is active.

Publication


Featured researches published by Mike Bray.


The Journal of Infectious Diseases | 1998

A Mouse Model for Evaluation of Prophylaxis and Therapy of Ebola Hemorrhagic Fever

Mike Bray; Kelly J. Davis; Tom Geisbert; Connie S. Schmaljohn; John W. Huggins

The Zaire subtype of Ebola virus (EBO-Z) is lethal for newborn mice, but adult mice are resistant to the virus, which prevents their use as an animal model of lethal Ebola infection. We serially passed EBO-Z virus in progressively older suckling mice, eventually obtaining a plaque-purified virus that was lethal for mature, immunocompetent BALB/c and C57BL/6 inbred and ICR (CD-1) outbred mice. Pathologic changes in the liver and spleen of infected mice resembled those in EBO-Z-infected primates. Virus titers in these tissues reached 10(9) pfu/g. The LD50 of mouse-adapted EBO-Z virus inoculated into the peritoneal cavity was approximately 1 virion. Mice were resistant to large doses of the same virus inoculated subcutaneously, intradermally, or intramuscularly. Mice injected peripherally with mouse-adapted or intraperitoneally with non-adapted EBO-Z virus resisted subsequent challenge with mouse-adapted virus.


Journal of Virology | 2003

The Ebola Virus VP35 Protein Inhibits Activation of Interferon Regulatory Factor 3

Christopher F. Basler; Andrea Mikulasova; Luis Martínez-Sobrido; Jason Paragas; Elke Mühlberger; Mike Bray; Hans-Dieter Klenk; Peter Palese; Adolfo García-Sastre

ABSTRACT The Ebola virus VP35 protein was previously found to act as an interferon (IFN) antagonist which could complement growth of influenza delNS1 virus, a mutant influenza virus lacking the influenza virus IFN antagonist protein, NS1. The Ebola virus VP35 could also prevent the virus- or double-stranded RNA-mediated transcriptional activation of both the beta IFN (IFN-β) promoter and the IFN-stimulated ISG54 promoter (C. Basler et al., Proc. Natl. Acad. Sci. USA 97:12289-12294, 2000). We now show that VP35 inhibits virus infection-induced transcriptional activation of IFN regulatory factor 3 (IRF-3)-responsive mammalian promoters and that VP35 does not block signaling from the IFN-α/β receptor. The ability of VP35 to inhibit this virus-induced transcription correlates with its ability to block activation of IRF-3, a cellular transcription factor of central importance in initiating the host cell IFN response. We demonstrate that VP35 blocks the Sendai virus-induced activation of two promoters which can be directly activated by IRF-3, namely, the ISG54 promoter and the ISG56 promoter. Further, expression of VP35 prevents the IRF-3-dependent activation of the IFN-α4 promoter in response to viral infection. The inhibition of IRF-3 appears to occur through an inhibition of IRF-3 phosphorylation. VP35 blocks virus-induced IRF-3 phosphorylation and subsequent IRF-3 dimerization and nuclear translocation. Consistent with these observations, Ebola virus infection of Vero cells activated neither transcription from the ISG54 promoter nor nuclear accumulation of IRF-3. These data suggest that in Ebola virus-infected cells, VP35 inhibits the induction of antiviral genes, including the IFN-β gene, by blocking IRF-3 activation.


Archives of Pathology & Laboratory Medicine | 2010

Pulmonary pathologic findings of fatal 2009 pandemic influenza A/H1N1 viral infections.

James R. Gill; Zong-Mei Sheng; Susan F. Ely; Donald G. Guinee; Mary Beth Beasley; James Suh; Charuhas Deshpande; Daniel J. Mollura; David M. Morens; Mike Bray; William D. Travis; Jeffery K. Taubenberger

CONTEXT In March 2009, a novel swine-origin influenza A/H1N1 virus was identified. After global spread, the World Health Organization in June declared the first influenza pandemic in 41 years. OBJECTIVE To describe the clinicopathologic characteristics of 34 people who died following confirmed A/H1N1 infection with emphasis on the pulmonary pathology findings. DESIGN We reviewed medical records, autopsy reports, microbiologic studies, and microscopic slides of 34 people who died between May 15 and July 9, 2009, and were investigated either by the New York City Office of Chief Medical Examiner (32 deaths) or through the consultation service of a coauthor (2 deaths). RESULTS Most of the 34 decedents (62%) were between 25 and 49 years old (median, 41.5 years). Tracheitis, bronchiolitis, and diffuse alveolar damage were noted in most cases. Influenza viral antigen was observed most commonly in the epithelium of the tracheobronchial tree but also in alveolar epithelial cells and macrophages. Most cases were reverse transcription-polymerase chain reaction positive for influenza. Histologic and microbiologic autopsy evidence of bacterial pneumonia was detected in 55% of cases. Underlying medical conditions including cardiorespiratory diseases and immunosuppression were present in 91% of cases. Obesity (body mass index, >30) was noted in 72% of adult and adolescent cases. CONCLUSIONS The pulmonary pathologic findings in fatal disease caused by the novel pandemic influenza virus are similar to findings identified in past pandemics. Superimposed bacterial infections of the respiratory tract were common. Preexisting obesity, cardiorespiratory diseases, and other comorbidities also were prominent findings among the decedents.


PLOS Pathogens | 2007

Effective Post-Exposure Treatment of Ebola Infection

Heinz Feldmann; Steven M. Jones; Kathleen M. Daddario-DiCaprio; Joan B. Geisbert; Ute Ströher; Allen Grolla; Mike Bray; Elizabeth A. Fritz; Lisa Fernando; Friederike Feldmann; Lisa E. Hensley; Thomas W. Geisbert

Ebola viruses are highly lethal human pathogens that have received considerable attention in recent years due to an increasing re-emergence in Central Africa and a potential for use as a biological weapon. There is no vaccine or treatment licensed for human use. In the past, however, important advances have been made in developing preventive vaccines that are protective in animal models. In this regard, we showed that a single injection of a live-attenuated recombinant vesicular stomatitis virus vector expressing the Ebola virus glycoprotein completely protected rodents and nonhuman primates from lethal Ebola challenge. In contrast, progress in developing therapeutic interventions against Ebola virus infections has been much slower and there is clearly an urgent need to develop effective post-exposure strategies to respond to future outbreaks and acts of bioterrorism, as well as to treat laboratory exposures. Here we tested the efficacy of the vesicular stomatitis virus-based Ebola vaccine vector in post-exposure treatment in three relevant animal models. In the guinea pig and mouse models it was possible to protect 50% and 100% of the animals, respectively, following treatment as late as 24 h after lethal challenge. More important, four out of eight rhesus macaques were protected if treated 20 to 30 min following an otherwise uniformly lethal infection. Currently, this approach provides the most effective post-exposure treatment strategy for Ebola infections and is particularly suited for use in accidentally exposed individuals and in the control of secondary transmission during naturally occurring outbreaks or deliberate release.


Antiviral Research | 2013

Crimean-Congo hemorrhagic fever: history, epidemiology, pathogenesis, clinical syndrome and genetic diversity.

Dennis A. Bente; Naomi L. Forrester; Douglas M. Watts; Alexander J. McAuley; Chris A. Whitehouse; Mike Bray

Crimean-Congo hemorrhagic fever (CCHF) is the most important tick-borne viral disease of humans, causing sporadic cases or outbreaks of severe illness across a huge geographic area, from western China to the Middle East and southeastern Europe and throughout most of Africa. CCHFV is maintained in vertical and horizontal transmission cycles involving ixodid ticks and a variety of wild and domestic vertebrates, which do not show signs of illness. The virus circulates in a number of tick genera, but Hyalomma ticks are the principal source of human infection, probably because both immature and adult forms actively seek hosts for the blood meals required at each stage of maturation. CCHF occurs most frequently among agricultural workers following the bite of an infected tick, and to a lesser extent among slaughterhouse workers exposed to the blood and tissues of infected livestock and medical personnel through contact with the body fluids of infected patients. CCHFV is the most genetically diverse of the arboviruses, with nucleotide sequence differences among isolates ranging from 20% for the viral S segment to 31% for the M segment. Viruses with diverse sequences can be found within the same geographic area, while closely related viruses have been isolated in far distant regions, suggesting that widespread dispersion of CCHFV has occurred at times in the past, possibly by ticks carried on migratory birds or through the international livestock trade. Reassortment among genome segments during co-infection of ticks or vertebrates appears to have played an important role in generating diversity, and represents a potential future source of novel viruses. In this article, we first review current knowledge of CCHFV, summarizing its molecular biology, maintenance and transmission, epidemiology and geographic range. We also include an extensive discussion of CCHFV genetic diversity, including maps of the range of the virus with superimposed phylogenetic trees. We then review the features of CCHF, including the clinical syndrome, diagnosis, treatment, pathogenesis, vaccine development and laboratory animal models of CCHF. The paper ends with a discussion of the possible future geographic range of the virus. For the benefit of researchers, we include a Supplementary Table listing all published reports of CCHF cases and outbreaks in the English-language literature, plus some principal articles in other languages, with total case numbers, case fatality rates and all CCHFV strains on GenBank.


Lancet Infectious Diseases | 2004

Pathogenesis of filoviral haemorrhagic fevers

Siddhartha Mahanty; Mike Bray

The filoviruses, marburgvirus and ebolavirus, cause epidemics of haemorrhagic fever with high case-fatality rates. The severe illness results from a complex of pathogenetic mechanisms that enable the virus to suppress innate and adaptive immune responses, infect and kill a broad variety of cell types, and elicit strong inflammatory responses and disseminated intravascular coagulation, producing a syndrome resembling septic shock. Most experimental data have been obtained on Zaire ebolavirus, which causes uniformly lethal disease in experimentally infected non-human primates but produces a broader range of outcomes in naturally infected human beings. 10-30% of patients can survive the illness by mobilising adaptive immune responses, and there is limited evidence that mild or symptomless infections also occur. The other filoviruses that have caused human disease, Sudan ebolavirus, Ivory Coast ebolavirus, and marburgvirus, produce a similar illness but with somewhat lower case-fatality rates. Variations in outcome during an epidemic might be due partly to genetically determined differences in innate immune responses to the viruses. Recent studies in non-human primates have shown that blocking of certain host responses, such as the coagulation cascade, can result in reduced viral replication and improved host survival.


Antiviral Research | 2008

Current and future antiviral therapy of severe seasonal and avian influenza

John H. Beigel; Mike Bray

Abstract The currently circulating H3N2 and H1N1 subtypes of influenza A virus cause a transient, febrile upper respiratory illness in most adults and children (“seasonal influenza”), but infants, the elderly, immunodeficient and chronically ill persons may develop life-threatening primary viral pneumonia or complications such as bacterial pneumonia. By contrast, avian influenza viruses such as the H5N1 virus that recently emerged in Southeast Asia can cause severe disease when transferred from domestic poultry to previously healthy people (“avian influenza”). Most H5N1 patients present with fever, cough and shortness of breath that progress rapidly to adult respiratory distress syndrome. In seasonal influenza, viral replication remains confined to the respiratory tract, but limited studies indicate that H5N1 infections are characterized by systemic viral dissemination, high cytokine levels and multiorgan failure. Gastrointestinal infection and encephalitis also occur. The licensed anti-influenza drugs (the M2 ion channel blockers, amantadine and rimantadine, and the neuraminidase inhibitors, oseltamivir and zanamivir) are beneficial for uncomplicated seasonal influenza, but appropriate dosing regimens for severe seasonal or H5N1 viral infections have not been defined. Treatment options may be limited by the rapid emergence of drug-resistant viruses. Ribavirin has also been used to a limited extent to treat influenza. This article reviews licensed drugs and treatments under development, including high-dose oseltamivir; parenterally administered neuraminidase inhibitors, peramivir and zanamivir; dimeric forms of zanamivir; the RNA polymerase inhibitor T-705; a ribavirin prodrug, viramidine; polyvalent and monoclonal antibodies; and combination therapies.


The Journal of Infectious Diseases | 2000

Cidofovir Protects Mice against Lethal Aerosol or Intranasal Cowpox Virus Challenge

Mike Bray; Mark Martinez; Donald F. Smee; Debbie Kefauver; Elizabeth Thompson; John W. Huggins

The efficacy of cidofovir for treatment of cowpox virus infection in BALB/c mice was investigated in an effort to evaluate new therapies for virulent orthopoxvirus infections of the respiratory tract in a small animal model. Exposure to 2(-5)x10(6) pfu of cowpox virus by aerosol or intranasally (inl) was lethal in 3- to 7-week-old animals. One inoculation of 100 mg/kg cidofovir on day 0, 2, or 4, with respect to aerosol infection, resulted in 90%-100% survival. Treatment on day 0 reduced peak pulmonary virus titers 10- to 100-fold, reduced the severity of viral pneumonitis, and prevented pulmonary hemorrhage. The same dose on day -6 to 2 protected 80%-100% of inl infected mice, whereas 1 inoculation on day -16 to -8 or day 3 to 6 was partially protective. Cidofovir delayed but did not prevent the death of inl infected mice with severe combined immunodeficiency. Treatment at the time of tail scarification with vaccinia virus did not block vaccination efficacy.


The Journal of Infectious Diseases | 2011

Basic Clinical and Laboratory Features of Filoviral Hemorrhagic Fever

Mark G. Kortepeter; Daniel G. Bausch; Mike Bray

The filoviruses Marburg and Ebola cause severe hemorrhagic fever (HF) in humans. Beginning with the 1967 Marburg outbreak, 30 epidemics, isolated cases, and accidental laboratory infections have been described in the medical literature. We reviewed those reports to determine the basic clinical and laboratory features of filoviral HF. The most detailed information was found in descriptions of patients treated in industrialized countries; except for the 2000 outbreak of Ebola Sudan HF in Uganda, reports of epidemics in central Africa provided little controlled or objective clinical data. Other than the case fatality rate, there were no clear differences in the features of the various filovirus infections. This compilation will be of value to medical workers responding to epidemics and to investigators attempting to develop animal models of filoviral HF. By identifying key unanswered questions and gaps in clinical data, it will help guide clinical research in future outbreaks.


Vaccine | 2000

Recombinant RNA replicons derived from attenuated Venezuelan equine encephalitis virus protect guinea pigs and mice from Ebola hemorrhagic fever virus.

Peter Pushko; Mike Bray; George V. Ludwig; Michael D. Parker; Alan L. Schmaljohn; Anthony Sanchez; Peter B. Jahrling; Jonathan F. Smith

RNA replicons derived from an attenuated strain of Venezuelan equine encephalitis virus (VEE), an alphavirus, were configured as candidate vaccines for Ebola hemorrhagic fever. The Ebola nucleoprotein (NP) or glycoprotein (GP) genes were introduced into the VEE RNA downstream from the VEE 26S promoter in place of the VEE structural protein genes. The resulting recombinant replicons, expressing the NP or GP genes, were packaged into VEE replicon particles (NP-VRP and GP-VRP, respectively) using a bipartite helper system that provided the VEE structural proteins in trans and prevented the regeneration of replication-competent VEE during packaging. The immunogenicity of NP-VRP and GP-VRP and their ability to protect against lethal Ebola infection were evaluated in BALB/c mice and in two strains of guinea pigs. The GP-VRP alone, or in combination with NP-VRP, protected both strains of guinea pigs and BALB/c mice, while immunization with NP-VRP alone protected BALB/c mice, but neither strain of guinea pig. Passive transfer of sera from VRP-immunized animals did not confer protection against lethal challenge. However, the complete protection achieved with active immunization with VRP, as well as the unique characteristics of the VEE replicon vector, warrant further testing of the safety and efficacy of NP-VRP and GP-VRP in primates as candidate vaccines against Ebola hemorrhagic fever.

Collaboration


Dive into the Mike Bray's collaboration.

Top Co-Authors

Avatar

Daniel J. Mollura

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Connie S. Schmaljohn

United States Army Medical Research Institute of Infectious Diseases

View shared research outputs
Top Co-Authors

Avatar

Keiko Ozato

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Peter B. Jahrling

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Heinz Feldmann

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Jason Paragas

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

John W. Huggins

United States Army Medical Research Institute of Infectious Diseases

View shared research outputs
Top Co-Authors

Avatar

Lisa E. Hensley

United States Army Medical Research Institute of Infectious Diseases

View shared research outputs
Researchain Logo
Decentralizing Knowledge