Jody S. Biggs
Commonwealth Scientific and Industrial Research Organisation
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jody S. Biggs.
Marine and Freshwater Research | 2009
Peter Roebeling; M. E. van Grieken; A. J. Webster; Jody S. Biggs; Peter J. Thorburn
Worldwide, coastal and marine ecosystems are affected by water pollution originating from coastal river catchments, even though ecosystems such as the Great Barrier Reef are vital from an environmental as well as an economic perspective. Improved management of coastal catchment resources is needed to remediate this serious and growing problem through, e.g. agricultural land use and management practice change. This may, however, be very costly and, consequently, there is a need to explore how water quality improvement can be achieved at least cost. In the present paper, we develop an environmental-economic modelling approach that integrates an agricultural production system simulation model and a catchment water quality model into a spatial environmental-economic land-use model to explore patterns of land use and management practice that most cost-effectively achieve specified water quality targets and, in turn, estimate corresponding water pollution abatement cost functions. In a case study of sediment and nutrient water pollution by the sugarcane and grazing industries in the Tully-Murray catchment (Queensland, Australia), it is shown that considerable improvements in water quality can be obtained at no additional cost, or even benefit, to the agricultural industry, whereas larger water quality improvements come at a significant cost to the agricultural industry.
Marine and Freshwater Research | 2009
A. J. Webster; Peter J. Thorburn; Peter Roebeling; H. L. Horan; Jody S. Biggs
The Great Barrier Reef is under threat from diffuse agricultural pollutants and potential climate change. Nitrogen loads are examined using the nitrogen surplus of simulated sugarcane production systems in the Tully–Murray catchment, comparing current management practice regimes with best management practice regimes under present day and future climate scenarios – nominally 2030 and 2070. These future scenarios are represented by increased carbon dioxide, increased temperature and increased rainfall variability. Simulation results suggest that the impact of potential climate change on diffuse agricultural nitrogen loads from sugarcane production in the Tully–Murray catchment to the Great Barrier Reef is likely to be small and negligible in comparison to the impacts of management practice change. Partial gross margin analysis suggests climate change will not noticeably alter the profitability of sugarcane production and, hence, is unlikely to be a driver of change for this land use in the Tully–Murray catchment. Improvements in water quality from sugarcane production are more likely to come from identification and adoption of best management practices.
Experimental Agriculture | 2016
Ana Paula Pessim de Oliveira; Peter J. Thorburn; Jody S. Biggs; Eduardo Rodrigues Viana de Lima; Lúcia Helena Cunha dos Anjos; Marcos Gervasio Pereira; Nelson Élio Zanotti
SUMMARY To evaluate the impact of trash management on sugarcane production and N fertiliser requirements in environmental conditions of Brazilian coastal tablelands, a simulation was conducted with APSIM-Sugar cropping systems model. The model was parameterised for, and validated against results from a long term (over 23 years) experiment comparing the system-burnt trash and green cane trash blanketing (GCTB), in Linhares-ES. Simulations were conducted over two crop cycles (14 years) with different management (100%, 75%, 50%, 25% GCTB and burnt trash), and N fertiliser rates from 0 to 240 kg ha −1 (in 40 kg ha −1 increments) on the ratoon crops, and 75% of these rates on the plant crops. Measured cane yields and soil carbon were simulated well by the model. The RMSE (root mean square error) of predictions in burnt and GCTB treatments were 14.02 Mg ha −1 and 13.45 Mg ha −1 for yield, and 0.09 and 0.13% for soil carbon. In the simulation, the cane yield responded positively to the GCTB systems. Optimum N rates were higher in the 100%, 75% and 50% GCTB than with burnt trash and 25% GCTB reflecting the greater yields under GCTB systems. The response to trash retention was dependent on N fertiliser, and it was smaller or even negative at lower N rates. With adequate N, the positive responses were predicted to occur in all crops after the imposition of GCTB system. The removal of any proportion of the trash reduced the potential sugarcane yield. The simulations showed that average environmental losses of N are likely to be greater from trash-retained systems at all N fertiliser rates.
Frontiers in Plant Science | 2017
Jeda Palmer; Peter J. Thorburn; Jody S. Biggs; Estelle J. Dominati; Merv Probert; Elizabeth A. Meier; Neil I. Huth; M. B. Dodd; V. O. Snow; Joshua R. Larsen; William J. Parton
Soil organic carbon (SOC) is an important and manageable property of soils that impacts on multiple ecosystem services through its effect on soil processes such as nitrogen (N) cycling and soil physical properties. There is considerable interest in increasing SOC concentration in agro-ecosystems worldwide. In some agro-ecosystems, increased SOC has been found to enhance the provision of ecosystem services such as the provision of food. However, increased SOC may increase the environmental footprint of some agro-ecosystems, for example by increasing nitrous oxide emissions. Given this uncertainty, progress is needed in quantifying the impact of increased SOC concentration on agro-ecosystems. Increased SOC concentration affects both N cycling and soil physical properties (i.e., water holding capacity). Thus, the aim of this study was to quantify the contribution, both positive and negative, of increased SOC concentration on ecosystem services provided by wheat agro-ecosystems. We used the Agricultural Production Systems sIMulator (APSIM) to represent the effect of increased SOC concentration on N cycling and soil physical properties, and used model outputs as proxies for multiple ecosystem services from wheat production agro-ecosystems at seven locations around the world. Under increased SOC, we found that N cycling had a larger effect on a range of ecosystem services (food provision, filtering of N, and nitrous oxide regulation) than soil physical properties. We predicted that food provision in these agro-ecosystems could be significantly increased by increased SOC concentration when N supply is limiting. Conversely, we predicted no significant benefit to food production from increasing SOC when soil N supply (from fertiliser and soil N stocks) is not limiting. The effect of increasing SOC on N cycling also led to significantly higher nitrous oxide emissions, although the relative increase was small. We also found that N losses via deep drainage were minimally affected by increased SOC in the dryland agro-ecosystems studied, but increased in the irrigated agro-ecosystem. Therefore, we show that under increased SOC concentration, N cycling contributes both positively and negatively to ecosystem services depending on supply, while the effects on soil physical properties are negligible.
Frontiers in Plant Science | 2016
Cécile M. Godde; Peter J. Thorburn; Jody S. Biggs; Elizabeth A. Meier
Carbon sequestration in agricultural soils has the capacity to mitigate greenhouse gas emissions, as well as to improve soil biological, physical, and chemical properties. The review of literature pertaining to soil organic carbon (SOC) dynamics within Australian grain farming systems does not enable us to conclude on the best farming practices to increase or maintain SOC for a specific combination of soil and climate. This study aimed to further explore the complex interactions of soil, climate, and farming practices on SOC. We undertook a modeling study with the Agricultural Production Systems sIMulator modeling framework, by combining contrasting Australian soils, climates, and farming practices (crop rotations, and management within rotations, such as fertilization, tillage, and residue management) in a factorial design. This design resulted in the transposition of contrasting soils and climates in our simulations, giving soil–climate combinations that do not occur in the study area to help provide insights into the importance of the climate constraints on SOC. We statistically analyzed the model’s outputs to determinate the relative contributions of soil parameters, climate, and farming practices on SOC. The initial SOC content had the largest impact on the value of SOC, followed by the climate and the fertilization practices. These factors explained 66, 18, and 15% of SOC variations, respectively, after 80 years of constant farming practices in the simulation. Tillage and stubble management had the lowest impacts on SOC. This study highlighted the possible negative impact on SOC of a chickpea phase in a wheat–chickpea rotation and the potential positive impact of a cover crop in a sub-tropical climate (QLD, Australia) on SOC. It also showed the complexities in managing to achieve increased SOC, while simultaneously aiming to minimize nitrous oxide (N2O) emissions and nitrate leaching in farming systems. The transposition of contrasting soils and climates in our simulations revealed the importance of the climate constraints on SOC.
Frontiers in Plant Science | 2017
Peter J. Thorburn; Jody S. Biggs; Jeda Palmer; Elizabeth A. Meier; Kirsten Verburg; Danielle M. Skocaj
Sugarcane production relies on the application of large amounts of nitrogen (N) fertilizer. However, application of N in excess of crop needs can lead to loss of N to the environment, which can negatively impact ecosystems. This is of particular concern in Australia where the majority of sugarcane is grown within catchments that drain directly into the World Heritage listed Great Barrier Reef Marine Park. Multiple factors that impact crop yield and N inputs of sugarcane production systems can affect N use efficiency (NUE), yet the efficacy many of these factors have not been examined in detail. We undertook an extensive simulation analysis of NUE in Australian sugarcane production systems to investigate (1) the impacts of climate on factors determining NUE, (2) the range and drivers of NUE, and (3) regional variation in sugarcane N requirements. We found that the interactions between climate, soils, and management produced a wide range of simulated NUE, ranging from ∼0.3 Mg cane (kg N)-1, where yields were low (i.e., <50 Mg ha-1) and N inputs were high, to >5 Mg cane (kg N)-1 in plant crops where yields were high and N inputs low. Of the management practices simulated (N fertilizer rate, timing, and splitting; fallow management; tillage intensity; and in-field traffic management), the only practice that significantly influenced NUE in ratoon crops was N fertilizer application rate. N rate also influenced NUE in plant crops together with the management of the preceding fallow. In addition, there is regional variation in N fertilizer requirement that could make N fertilizer recommendations more specific. While our results show that complex interrelationships exist between climate, crop growth, N fertilizer rates and N losses to the environment, they highlight the priority that should be placed on optimizing N application rate and fallow management to improve NUE in Australian sugarcane production systems. New initiatives in seasonal climate forecasting, decisions support systems and enhanced efficiency fertilizers have potential for making N fertilizer management more site specific, an action that should facilitate increased NUE.
Crop & Pasture Science | 2015
Yashvir Chauhan; Peter J. Thorburn; Jody S. Biggs; Graeme Wright
Abstract. With the aim of increasing peanut production in Australia, the Australian peanut industry has recently considered growing peanuts in rotation with maize at Katherine in the Northern Territory—a location with a semi-arid tropical climate and surplus irrigation capacity. We used the well-validated APSIM model to examine potential agronomic benefits and long-term risks of this strategy under the current and warmer climates of the new region. Yield of the two crops, irrigation requirement, total soil organic carbon (SOC), nitrogen (N) losses and greenhouse gas (GHG) emissions were simulated. Sixteen climate stressors were used; these were generated by using global climate models ECHAM5, GFDL2.1, GFDL2.0 and MRIGCM232 with a median sensitivity under two Special Report of Emissions Scenarios over the 2030 and 2050 timeframes plus current climate (baseline) for Katherine. Effects were compared at three levels of irrigation and three levels of N fertiliser applied to maize grown in rotations of wet-season peanut and dry-season maize (WPDM), and wet-season maize and dry-season peanut (WMDP). The climate stressors projected average temperature increases of 1°C to 2.8°C in the dry (baseline 24.4°C) and wet (baseline 29.5°C) seasons for the 2030 and 2050 timeframes, respectively. Increased temperature caused a reduction in yield of both crops in both rotations. However, the overall yield advantage of WPDM increased from 41% to up to 53% compared with the industry-preferred sequence of WMDP under the worst climate projection. Increased temperature increased the irrigation requirement by up to 11% in WPDM, but caused a smaller reduction in total SOC accumulation and smaller increases in N losses and GHG emission compared with WMDP. We conclude that although increased temperature will reduce productivity and total SOC accumulation, and increase N losses and GHG emissions in Katherine or similar northern Australian environments, the WPDM sequence should be preferable over the industry-preferred sequence because of its overall yield and sustainability advantages in warmer climates. Any limitations of irrigation resulting from climate change could, however, limit these advantages.
Journal of Environmental Management | 2018
John Kandulu; Peter J. Thorburn; Jody S. Biggs; Kirsten Verburg
Use of chemical agricultural inputs such as nitrogen fertilisers (N) in agricultural production can cause diffuse source pollution thereby degrading the health of coastal and marine ecosystems in coastal river catchments. Previous reviewed economic assessments of N management in agricultural production seldom consider broader environmental impacts and uncertain climatic and economic conditions. This paper presents an economic risk framework for assessing economic and environmental trade-offs of N management strategies taking into account variable climatic and economic conditions. The framework is underpinned by a modelling platform that integrates Agricultural Production System sIMulation modelling (APSIM), probability theory, Monte Carlo simulation, and financial risk analysis techniques. We applied the framework to a case study in Tully, a coastal catchment in north-eastern Australia with a well-documented N pollution problem. Our results show that switching from managing N to maximise private net returns to maximising social net returns could reduce expected private net returns by
Crop & Pasture Science | 2017
Jeda Palmer; Peter J. Thorburn; Elizabeth A. Meier; Jody S. Biggs; Brett Whelan; Kanika Singh; David N. Eyre
99 ha-1, but yield additional environmental benefits equal to
Agronomy for Sustainable Development | 2017
Nikki P. Dumbrell; Marit E. Kragt; Elizabeth A. Meier; Jody S. Biggs; Peter J. Thorburn
191 ha-1. Further, switching from managing N to maximise private returns in years with the highest profit potential (hereafter, good years) to maximising mean social net returns could reduce expected private profits in good years by
Collaboration
Dive into the Jody S. Biggs's collaboration.
Commonwealth Scientific and Industrial Research Organisation
View shared research outputsCommonwealth Scientific and Industrial Research Organisation
View shared research outputsCommonwealth Scientific and Industrial Research Organisation
View shared research outputsCommonwealth Scientific and Industrial Research Organisation
View shared research outputsCommonwealth Scientific and Industrial Research Organisation
View shared research outputsCommonwealth Scientific and Industrial Research Organisation
View shared research outputsCommonwealth Scientific and Industrial Research Organisation
View shared research outputs