Elizabeth A. Meier
Commonwealth Scientific and Industrial Research Organisation
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Elizabeth A. Meier.
Soil Research | 2006
Elizabeth A. Meier; Peter J. Thorburn; M. E. Probert
The concentration of ammonium-nitrogen (NH4+-N) frequently exceeds that of nitrate-N (NO3--N) in Australian wet tropical sugarcane soils. The amount of mineral N in soil is the net result of complex processes in the field, so the objective of this experiment was to investigate nitrification and ammonification in these soils under laboratory conditions. Aerobic and saturated incubations were performed for 1 week on 2 wet tropical soils. Net NO3--N increased significantly in both soils during both types of incubation. A second series of aerobic incubations of these soils treated with NH4+-N and inoculated with subtropical nitrifying soils was conducted for 48 days. Nitrification in the wet tropical soils was not significantly affected by inoculation, and virtually all added N was nitrified during the incubation period. Mineral N behaviour of the 48-day incubations was captured with the APSIM-SoilN model. As nitrification proceeded under laboratory conditions and was able to be captured by the model, it was concluded that nitrification processes in the wet tropical soils studied were not different from those in the subtropical soils. Processes that remove NO3- from the soil, such as leaching and denitrification, may therefore be important factors affecting the proportions of NH4+-N and NO3--N measured under field conditions.
Frontiers in Plant Science | 2016
Elizabeth A. Meier; Peter J. Thorburn
The warming of world climate systems is driving interest in the mitigation of greenhouse gas (GHG) emissions. In the agricultural sector, practices that mitigate GHG emissions include those that (1) reduce emissions [e.g., those that reduce nitrous oxide (N2O) emissions by avoiding excess nitrogen (N) fertilizer application], and (2) increase soil organic carbon (SOC) stocks (e.g., by retaining instead of burning crop residues). Sugarcane is a globally important crop that can have substantial inputs of N fertilizer and which produces large amounts of crop residues (‘trash’). Management of N fertilizer and trash affects soil carbon and nitrogen cycling, and hence GHG emissions. Trash has historically been burned at harvest, but increasingly is being retained on the soil surface as a ‘trash blanket’ in many countries. The potential for trash retention to alter N fertilizer requirements and sequester SOC was investigated in this study. The APSIM model was calibrated with data from field and laboratory studies of trash decomposition in the wet tropics of northern Australia. APSIM was then validated against four independent data sets, before simulating location × soil × fertilizer × trash management scenarios. Soil carbon increased in trash blanketed soils relative to SOC in soils with burnt trash. However, further increases in SOC for the study region may be limited because the SOC in trash blanketed soils could be approaching equilibrium; future GHG mitigation efforts in this region should therefore focus on N fertilizer management. Simulated N fertilizer rates were able to be reduced from conventional rates regardless of trash management, because of low yield potential in the wet tropics. For crops subjected to continuous trash blanketing, there was substantial immobilization of N in decomposing trash so conventional N fertilizer rates were required for up to 24 years after trash blanketing commenced. After this period, there was potential to reduce N fertilizer rates for crops when trash was retained (≤20 kg N ha–1 per plant or ratoon crop) while maintaining ≥95% of maximum yields. While these savings in N fertilizer use were modest at the field scale, they were potentially important when aggregated at the regional level.
Frontiers in Plant Science | 2017
Jeda Palmer; Peter J. Thorburn; Jody S. Biggs; Estelle J. Dominati; Merv Probert; Elizabeth A. Meier; Neil I. Huth; M. B. Dodd; V. O. Snow; Joshua R. Larsen; William J. Parton
Soil organic carbon (SOC) is an important and manageable property of soils that impacts on multiple ecosystem services through its effect on soil processes such as nitrogen (N) cycling and soil physical properties. There is considerable interest in increasing SOC concentration in agro-ecosystems worldwide. In some agro-ecosystems, increased SOC has been found to enhance the provision of ecosystem services such as the provision of food. However, increased SOC may increase the environmental footprint of some agro-ecosystems, for example by increasing nitrous oxide emissions. Given this uncertainty, progress is needed in quantifying the impact of increased SOC concentration on agro-ecosystems. Increased SOC concentration affects both N cycling and soil physical properties (i.e., water holding capacity). Thus, the aim of this study was to quantify the contribution, both positive and negative, of increased SOC concentration on ecosystem services provided by wheat agro-ecosystems. We used the Agricultural Production Systems sIMulator (APSIM) to represent the effect of increased SOC concentration on N cycling and soil physical properties, and used model outputs as proxies for multiple ecosystem services from wheat production agro-ecosystems at seven locations around the world. Under increased SOC, we found that N cycling had a larger effect on a range of ecosystem services (food provision, filtering of N, and nitrous oxide regulation) than soil physical properties. We predicted that food provision in these agro-ecosystems could be significantly increased by increased SOC concentration when N supply is limiting. Conversely, we predicted no significant benefit to food production from increasing SOC when soil N supply (from fertiliser and soil N stocks) is not limiting. The effect of increasing SOC on N cycling also led to significantly higher nitrous oxide emissions, although the relative increase was small. We also found that N losses via deep drainage were minimally affected by increased SOC in the dryland agro-ecosystems studied, but increased in the irrigated agro-ecosystem. Therefore, we show that under increased SOC concentration, N cycling contributes both positively and negatively to ecosystem services depending on supply, while the effects on soil physical properties are negligible.
Frontiers in Plant Science | 2016
Cécile M. Godde; Peter J. Thorburn; Jody S. Biggs; Elizabeth A. Meier
Carbon sequestration in agricultural soils has the capacity to mitigate greenhouse gas emissions, as well as to improve soil biological, physical, and chemical properties. The review of literature pertaining to soil organic carbon (SOC) dynamics within Australian grain farming systems does not enable us to conclude on the best farming practices to increase or maintain SOC for a specific combination of soil and climate. This study aimed to further explore the complex interactions of soil, climate, and farming practices on SOC. We undertook a modeling study with the Agricultural Production Systems sIMulator modeling framework, by combining contrasting Australian soils, climates, and farming practices (crop rotations, and management within rotations, such as fertilization, tillage, and residue management) in a factorial design. This design resulted in the transposition of contrasting soils and climates in our simulations, giving soil–climate combinations that do not occur in the study area to help provide insights into the importance of the climate constraints on SOC. We statistically analyzed the model’s outputs to determinate the relative contributions of soil parameters, climate, and farming practices on SOC. The initial SOC content had the largest impact on the value of SOC, followed by the climate and the fertilization practices. These factors explained 66, 18, and 15% of SOC variations, respectively, after 80 years of constant farming practices in the simulation. Tillage and stubble management had the lowest impacts on SOC. This study highlighted the possible negative impact on SOC of a chickpea phase in a wheat–chickpea rotation and the potential positive impact of a cover crop in a sub-tropical climate (QLD, Australia) on SOC. It also showed the complexities in managing to achieve increased SOC, while simultaneously aiming to minimize nitrous oxide (N2O) emissions and nitrate leaching in farming systems. The transposition of contrasting soils and climates in our simulations revealed the importance of the climate constraints on SOC.
Frontiers in Plant Science | 2017
Peter J. Thorburn; Jody S. Biggs; Jeda Palmer; Elizabeth A. Meier; Kirsten Verburg; Danielle M. Skocaj
Sugarcane production relies on the application of large amounts of nitrogen (N) fertilizer. However, application of N in excess of crop needs can lead to loss of N to the environment, which can negatively impact ecosystems. This is of particular concern in Australia where the majority of sugarcane is grown within catchments that drain directly into the World Heritage listed Great Barrier Reef Marine Park. Multiple factors that impact crop yield and N inputs of sugarcane production systems can affect N use efficiency (NUE), yet the efficacy many of these factors have not been examined in detail. We undertook an extensive simulation analysis of NUE in Australian sugarcane production systems to investigate (1) the impacts of climate on factors determining NUE, (2) the range and drivers of NUE, and (3) regional variation in sugarcane N requirements. We found that the interactions between climate, soils, and management produced a wide range of simulated NUE, ranging from ∼0.3 Mg cane (kg N)-1, where yields were low (i.e., <50 Mg ha-1) and N inputs were high, to >5 Mg cane (kg N)-1 in plant crops where yields were high and N inputs low. Of the management practices simulated (N fertilizer rate, timing, and splitting; fallow management; tillage intensity; and in-field traffic management), the only practice that significantly influenced NUE in ratoon crops was N fertilizer application rate. N rate also influenced NUE in plant crops together with the management of the preceding fallow. In addition, there is regional variation in N fertilizer requirement that could make N fertilizer recommendations more specific. While our results show that complex interrelationships exist between climate, crop growth, N fertilizer rates and N losses to the environment, they highlight the priority that should be placed on optimizing N application rate and fallow management to improve NUE in Australian sugarcane production systems. New initiatives in seasonal climate forecasting, decisions support systems and enhanced efficiency fertilizers have potential for making N fertilizer management more site specific, an action that should facilitate increased NUE.
Advances in Animal Biosciences | 2016
R. Sándor; Fiona Ehrhardt; Bruno Basso; Gianni Bellocchi; Arti Bhatia; Lorenzo Brilli; M. De Antoni Migliorati; Jordi Doltra; C. Dorich; Luca Doro; Nuala Fitton; Sandro José Giacomini; Peter Grace; B. Grant; Mt Harrison; S.K. Jones; Miko U. F. Kirschbaum; Katja Klumpp; Patricia Laville; Joël Léonard; Mark A. Liebig; Mark Lieffering; Raphaël Martin; Russel McAuliffe; Elizabeth A. Meier; Lutz Merbold; Andrew D. Moore; V. Myrgiotis; Paul C. D. Newton; Elizabeth Pattey
Much of the uncertainty in crop and grassland model predictions of how arable and grassland systems respond to changes in management and environmental drivers can be attributed to differences in the structure of these models. This has created an urgent need for international bench- marking of models, in which uncertainties are estimated by running several models that simulate the same physical and management conditions (ensemble modelling) to generate expanded envelopes of uncertainty in model predictions (Asseng et al. , 2013). Simulations of C and N fluxes, in particular, are inherently uncertain because they are driven by complex interactions (Sandor et al. , 2016) and complicated by considerable spatial and temporal variability in the measurements. In this context, the Integrative Research Group of the Global Research Alliance (GRA) on Agricultural Greenhouse Gases promotes a coordinated activity across multiple international projects (e.g. C and N Models Inter-comparison and Improvement to assess management options for GHG mitigation in agrosystems worldwide (C-N MIP) and Models4Pastures of the FACCE-JPI, https://www.faccejpi.com) to benchmark and compare simulation models that estimate C – N related outputs (including greenhouse gas emissions) from arable crop and grassland systems (http://globalresearchalliance.org/e/model- intercomparison-on-agricultural-ghg-emissions). This study presents some preliminary results on the uncertainty of outputs from 12 grassland models, whereas exploring differences in model response when increasing data resources are used for model calibration.
Crop & Pasture Science | 2017
Jeda Palmer; Peter J. Thorburn; Elizabeth A. Meier; Jody S. Biggs; Brett Whelan; Kanika Singh; David N. Eyre
Abstract. Greenhouse gas abatement in the agricultural cropping industry can be achieved by employing management practices that sequester soil carbon (C) or minimise nitrous oxide (N2O) emissions from soils. However, C sequestration stimulates N2O emissions, making the net greenhouse-gas abatement potential of management practices difficult to predict. We studied land-management practices that have potential to mitigate greenhouse gas emissions by increasing soil C storage and/or decreasing soil N2O emissions for a diverse range of broadacre grain cropping sites in New South Wales. Carbon sequestration and N2O emissions were simulated with the Agricultural Production Systems Simulator (APSIM) for a baseline crop-management scenario and alternative scenarios representing management practices for greenhouse gas abatement, for 15 rainfed or irrigated sites. The global warming potential of the scenarios was quantified at 25 and 100 years after commencement of the alternative practices. Soil C and N2O emissions were predicted to increase with the use of practices that increased organic matter additions to the soil (e.g. adding a summer crop to the rotation). However, in only a few cases did the increase in soil C storage counter the N2O emissions sufficiently to provide net greenhouse gas abatement. For rainfed sites, inclusion of a summer crop and/or a pasture in the rotation was predicted to provide greenhouse gas abatement after 25 years, whereas after 100 years, only practices that included a summer crop provided abatement for some sites. For irrigated sites after 25 years, practices that reduced N fertiliser rate while retaining stubble were predicted to provide small abatement, and practices that included a summer crop provided abatement for some sites. After 100 years, practices likely to provide abatement included those that reduced N2O emissions, such as reducing N fertiliser rate. These findings suggest that a few management practices are likely to abate greenhouse gas emissions across New South Wales grain production sites and that these practices differ for irrigated and rainfed sites.
Agronomy for Sustainable Development | 2017
Nikki P. Dumbrell; Marit E. Kragt; Elizabeth A. Meier; Jody S. Biggs; Peter J. Thorburn
Globally, agriculture is a significant contributor to greenhouse gas emissions. The environment (e.g., soils and climate) and management influence agricultural greenhouse gas emissions and the potential to reduce emissions. For agriculture to contribute to greenhouse gas abatement in the long term, it is important to identify low-cost mitigation actions that farmers can adopt. It is hypothesized that greenhouse gas abatement potential and the associated costs will differ substantially between environments in Australia. Seven alternative management scenarios were identified as both suitable for adoption across different grain growing environments in Australia and potentially able to provide greenhouse gas abatement. The Agricultural Production Systems Simulator was used to simulate these alternative management scenarios over a 25-year period and analyze the potential for Australian grain farmers, across contrasting environments, to increase soil organic carbon stocks and/or reduce nitrous oxide emissions. This analysis was paired with a whole-farm economic analysis to determine the implications of the different greenhouse gas abatement scenarios on farm profitability. Results from case studies in Australia’s three main grain growing regions demonstrate that significant heterogeneity exists in the biophysical potential and costs to reduce greenhouse gas emissions across locations. The maximum predicted abatement potential for the case study sites varied from 0.34 to 2.03 metric tons of carbon dioxide equivalents per hectare per year. In most simulations, greenhouse gas abatement came at a cost to farmers ranging from 0.11 Australian dollars (AUD) to more than 300 AUD per metric ton of abated carbon dioxide equivalent. This is the first study to explore the costs of mitigation including multiple greenhouse gases and grain farming case studies across Australia. These findings can inform the future development of effective climate change mitigation policies, which frequently use national default values in their design.
Field Crops Research | 2005
Peter J. Thorburn; Elizabeth A. Meier; M. E. Probert
Nutrient Cycling in Agroecosystems | 2006
Elizabeth A. Meier; Peter J. Thorburn; M. K. Wegener; K. E. Basford
Collaboration
Dive into the Elizabeth A. Meier's collaboration.
Commonwealth Scientific and Industrial Research Organisation
View shared research outputsCommonwealth Scientific and Industrial Research Organisation
View shared research outputs