Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Joel Abramowitz is active.

Publication


Featured researches published by Joel Abramowitz.


Neuron | 2008

TRPC3 Channels Are Required for Synaptic Transmission and Motor Coordination

Jana Hartmann; Elena Dragicevic; Helmuth Adelsberger; Horst A. Henning; Martin Sumser; Joel Abramowitz; Robert Blum; Alexander Dietrich; Marc Freichel; Veit Flockerzi; Lutz Birnbaumer; Arthur Konnerth

In the mammalian central nervous system, slow synaptic excitation involves the activation of metabotropic glutamate receptors (mGluRs). It has been proposed that C1-type transient receptor potential (TRPC1) channels underlie this synaptic excitation, but our analysis of TRPC1-deficient mice does not support this hypothesis. Here, we show unambiguously that it is TRPC3 that is needed for mGluR-dependent synaptic signaling in mouse cerebellar Purkinje cells. TRPC3 is the most abundantly expressed TRPC subunit in Purkinje cells. In mutant mice lacking TRPC3, both slow synaptic potentials and mGluR-mediated inward currents are completely absent, while the synaptically mediated Ca2+ release signals from intracellular stores are unchanged. Importantly, TRPC3 knockout mice exhibit an impaired walking behavior. Taken together, our results establish TRPC3 as a new type of postsynaptic channel that mediates mGluR-dependent synaptic transmission in cerebellar Purkinje cells and is crucial for motor coordination.


Proceedings of the National Academy of Sciences of the United States of America | 2007

Orai proteins interact with TRPC channels and confer responsiveness to store depletion

Yanhong Liao; Christian Erxleben; Eda Yildirim; Joel Abramowitz; David L. Armstrong; Lutz Birnbaumer

The TRPC (C-type transient receptor potential) class of ion channels has been hypothesized to participate in store-operated Ca2+ entry (SOCE). Recently, however, STIM1 and Orai1 proteins have been proposed to form SOCE channels. Whether TRPCs participate in SOCE that is dependent on or regulated by Orai has not been explored. Here we show that Orai1 physically interacts with the N and C termini of TRPC3 and TRPC6, and that in cells overexpressing either TRPC3 or TRPC6 in a store-depletion insensitive manner, these TRPCs become sensitive to store depletion upon expression of an exogenous Orai. Thus, Orai-1, -2, and -3 enhanced thapsigargin-induced calcium entry by 50–150% in cells stably overexpressing either TRPC3 or TRPC6. Orai1 expression had no significant effect on endogenous, thapsigargin-induced calcium entry in wild-type cells (HEK-293, COS1), in HEK cells expressing a thapsigargin-sensitive variant of TRPC3 (TRPC3a), or in HEK cells overexpressing another membrane protein, V1aR. Single-channel cation currents present in membrane patches of TRPC3-overexpressing cells were suppressed by expression of Orai1. We propose that Orai proteins by interacting with TRPCs act as regulatory subunits that confer STIM1-mediated store depletion sensitivity to these channels.


The FASEB Journal | 2009

Physiology and pathophysiology of canonical transient receptor potential channels

Joel Abramowitz; Lutz Birnbaumer

The existence of a mammalian family of TRPC ion channels, direct homologues of TRP, the visual transduction channel of flies, was discovered during 1995‐1996 as a consequence of research into the mechanism by which the stimulation of the receptor‐Gq‐phospholipase Cβ signaling pathway leads to sustained increases in intracellular calcium. Mammalian TRPs, TRPCs, turned out to be nonselective, calcium‐permeable cation channels, which cause both a collapse of the cells membrane potential and entry of calcium. The family comprises 7 members and is widely expressed. Many cells and tissues express between 3 and 4 of the 7 TRPCs. Despite their recent discovery, a wealth of information has accumulated, showing that TRPCs have widespread roles in almost all cells studied, including cells from excitable and nonexcitable tissues, such as the nervous and cardiovascular systems, the kidney and the liver, and cells from endothelia, epithelia, and the bone marrow compartment. Disruption of TRPC function is at the root of some familial diseases. More often, TRPCs are contributing risk factors in complex diseases. The present article reviews what has been uncovered about physiological roles of mammalian TRPC channels since the time of their discovery. This analysis reveals TRPCs as major and unsuspected gates of Ca2+ entry that contribute, depending on context, to activation of transcription factors, apoptosis, vascular contractility, platelet activation, and cardiac hypertrophy, as well as to normal and abnormal cell proliferation. TRPCs emerge as targets for a thus far nonexistent field of pharmacological intervention that may ameliorate complex diseases.— Abramowitz, J., Birnbaumer, L. Physiology and patho‐physiology of canonical transient receptor potential channels. FASEB J. 23, 297‐328 (2009)


Proceedings of the National Academy of Sciences of the United States of America | 2008

Functional interactions among Orai1, TRPCs, and STIM1 suggest a STIM-regulated heteromeric Orai/TRPC model for SOCE/Icrac channels

Yanhong Liao; Christian Erxleben; Joel Abramowitz; Veit Flockerzi; Michael X. Zhu; David L. Armstrong; Lutz Birnbaumer

Receptor-operated Ca2+ entry (ROCE) and store-operated Ca2+ entry (SOCE) into cells are functions performed by all higher eukaryotic cells, and their impairment is life-threatening. The main molecular components of this pathway appear to be known. However, the molecular make-up of channels mediating ROCE and SOCE is largely unknown. One hypothesis proposes SOCE channels to be formed solely by Orai proteins. Another proposes SOCE channels to be composed of both Orai and C-type transient receptor potential (TRPC) proteins. Both hypotheses propose that the channels are activated by STIM1, a sensor of the filling state of the Ca2+ stores that activates Ca2+ entry when stores are depleted. The role of Orai in SOCE has been proven. Here we show the TRPC-dependent reconstitution of Icrac, the electrophysiological correlate to SOCE, by expression of Orai1; we also show that R91W-Orai1 can inhibit SOCE and ROCE and that Orai1 and STIM1 expression leads to functional expression of Gd-resistant ROCE. Because channels that mediate ROCE are accepted to be formed with the participation of TRPCs, our data show functional interaction between ROCE and SOCE components. We propose that SOCE/Icrac channels are composed of heteromeric complexes that include TRPCs and Orai proteins.


Proceedings of the National Academy of Sciences of the United States of America | 2009

A role for Orai in TRPC-mediated Ca2+ entry suggests that a TRPC:Orai complex may mediate store and receptor operated Ca2+ entry

Yanhong Liao; Nicholas W. Plummer; Margaret D. George; Joel Abramowitz; Michael X. Zhu; Lutz Birnbaumer

TRPC and Orai proteins have both been proposed to form Ca2+-selective, store-operated calcium entry (SOCE) channels that are activated by store-depletion with Ca2+ chelators or calcium pump inhibitors. In contrast, only TRPC proteins have been proposed to form nonselective receptor-operated calcium entry (ROCE) cation channels that are activated by Gq/Gi-PLCβ signaling, which is the physiological stimulus for store depletion. We reported previously that a dominant negative Orai1 mutant, R91W, inhibits Ca2+ entry through both SOCE and ROCE channels, implicating Orai participation in both channel complexes. However, the argument for Orai participating in ROCE independently of store depletion is tenuous because store depletion is an integral component of the ROCE response, which includes formation of IP3, a store-depleting agent. Here we show that the R91W mutant also blocks diacylglycerol (DAG)-activated Ca2+ entry into cells that stably, or transiently, express DAG-responsive TRPC proteins. This strongly suggests that Orai and TRPC proteins form complexes that participate in Ca2+ entry with or without activation of store depletion. To integrate these results with recent data linking SOCE with recruitment of Orai and TRPCs to lipid rafts by STIM, we develop the hypothesis that Orai:TRPC complexes recruited to lipid rafts mediate SOCE, whereas the same complexes mediate ROCE when they are outside of lipid rafts. It remains to be determined whether the molecules forming the permeation pathway are the same when Orai:TRPC complexes mediate ROCE or SOCE.


Circulation Research | 2009

TRPC1 Channels Are Critical for Hypertrophic Signaling in the Heart

Malini Seth; Zhu Shan Zhang; Lan Mao; Victoria Graham; Jarrett Burch; Jonathan A. Stiber; Leonidas Tsiokas; Michelle P. Winn; Joel Abramowitz; Howard A. Rockman; Lutz Birnbaumer; Paul B. Rosenberg

Rationale: Cardiac muscle adapts to increase workload by altering cardiomyocyte size and function resulting in cardiac hypertrophy. G protein–coupled receptor signaling is known to govern the hypertrophic response through the regulation of ion channel activity and downstream signaling in failing cardiomyocytes. Objective: Transient receptor potential canonical (TRPC) channels are G protein–coupled receptor operated channels previously implicated in cardiac hypertrophy. Our objective of this study is to better understand how TRPC channels influence cardiomyocyte calcium signaling. Methods and Results: Here, we used whole cell patch clamp of adult cardiomyocytes to show upregulation of a nonselective cation current reminiscent of TRPC channels subjected to pressure overload. This TRPC current corresponds to the increased TRPC channel expression noted in hearts of mice subjected to pressure overload. Importantly, we show that mice lacking TRPC1 channels are missing this putative TRPC current. Moreover, Trpc1−/− mice fail to manifest evidence of maladaptive cardiac hypertrophy and maintain preserved cardiac function when subjected to hemodynamic stress and neurohormonal excess. In addition, we provide a mechanistic basis for the protection conferred to Trpc1−/− mice as mechanosensitive signaling through calcineurin/NFAT, mTOR and Akt is altered in Trpc1−/− mice. Conclusions: From these studies, we suggest that TRPC1 channels are critical for the adaptation to biomechanical stress and TRPC dysregulation leads to maladaptive cardiac hypertrophy and failure.


Proceedings of the National Academy of Sciences of the United States of America | 2011

G protein Gαo is essential for vomeronasal function and aggressive behavior in mice

Pablo Chamero; Vicky Katsoulidou; Philipp Hendrix; Bernd Bufe; Richard G. Roberts; Hiroaki Matsunami; Joel Abramowitz; Lutz Birnbaumer; Frank Zufall; Trese Leinders-Zufall

The rodent vomeronasal organ (VNO) mediates the regulation of species-specific and interspecies social behaviors. We have used gene targeting to examine the role of the G protein Gαo, encoded by the gene Gnao1, in vomeronasal function. We used the Cre-loxP system to delete Gαo in those cells that express olfactory marker protein, which includes all vomeronasal sensory neurons of the basal layer of the VNO sensory epithelium. Using electrophysiology and calcium imaging, we show that the conditional null mice exhibit strikingly reduced sensory responses in V2R receptor-expressing vomeronasal sensory neurons to specific molecular cues, including MHC1 antigens, major urinary proteins, and exocrine gland-secreting peptide. Gαo is also vital for vomeronasal sensing of two N-formylated mitochondrially encoded peptides derived from NADH dehydrogenase 1. Furthermore, we show that Gαo is an essential requirement for the display of male–male territorial aggression as well as maternal aggression in mice. Finally, we show that Gαo-dependent maternal aggression can be induced by major urinary proteins. These cellular and behavioral phenotypes identify Gαo as the primary G-protein α-subunit mediating the detection of peptide and protein pheromones by sensory neurons of the VNO.


Circulation | 2003

Ouabain- and Marinobufagenin-Induced Proliferation of Human Umbilical Vein Smooth Muscle Cells and a Rat Vascular Smooth Muscle Cell Line, A7r5

Joel Abramowitz; Cuiping Dai; Karen K. Hirschi; Renata I. Dmitrieva; Peter A. Doris; Lijun Liu; Julius C. Allen

Background—We studied the growth-promoting effects of 2 sodium pump–selective cardiotonic steroids, ouabain and marinobufagenin, on cultured cells from vascular smooth muscle (VSMCs) from human umbilical vein and a rat VSMC line, A7r5. Methods and Results—Both ouabain and marinobufagenin activated proliferation of these cells in a concentration-dependent manner, reflecting the cardiotonic steroid sensitivity of the specific &agr;1 subunit contained within each cell source. The observed effective concentration ranges of both compounds was below that necessary to induce cytoplasmic ion alterations by sodium pump inhibition. Conclusions—These data indicate that the ouabain-activated proliferative effect previously observed in canine VSMCs occurs in other VSMC sources. This growth effect seems to be initiated by drug interaction with the sodium pump, reflected by the affinity of the steroid for the pump, and is independent of altered transmembrane ionic gradients.


Open Biology | 2012

TRPC3 and TRPC6 are essential for normal mechanotransduction in subsets of sensory neurons and cochlear hair cells

Kathryn Quick; Jing Zhao; Niels Eijkelkamp; John E. Linley; François Rugiero; James J. Cox; Ramin Raouf; Martine Gringhuis; Jane E. Sexton; Joel Abramowitz; Ruth R. Taylor; Andy Forge; Jonathan Ashmore; Nerissa K. Kirkwood; Corné J. Kros; Guy P. Richardson; Marc Freichel; Veit Flockerzi; Lutz Birnbaumer; John N. Wood

Summary Transient receptor potential (TRP) channels TRPC3 and TRPC6 are expressed in both sensory neurons and cochlear hair cells. Deletion of TRPC3 or TRPC6 in mice caused no behavioural phenotype, although loss of TRPC3 caused a shift of rapidly adapting (RA) mechanosensitive currents to intermediate-adapting currents in dorsal root ganglion sensory neurons. Deletion of both TRPC3 and TRPC6 caused deficits in light touch and silenced half of small-diameter sensory neurons expressing mechanically activated RA currents. Double TRPC3/TRPC6 knock-out mice also showed hearing impairment, vestibular deficits and defective auditory brain stem responses to high-frequency sounds. Basal, but not apical, cochlear outer hair cells lost more than 75 per cent of their responses to mechanical stimulation. FM1-43-sensitive mechanically gated currents were induced when TRPC3 and TRPC6 were co-expressed in sensory neuron cell lines. TRPC3 and TRPC6 are thus required for the normal function of cells involved in touch and hearing, and are potential components of mechanotransducing complexes.


Gastroenterology | 2009

Deletion of TRPC3 in Mice Reduces Store-Operated Ca2+ Influx and the Severity of Acute Pancreatitis

Min Seuk Kim; Jeong Hee Hong; Qin Li; Dong Min Shin; Joel Abramowitz; Lutz Birnbaumer; Shmuel Muallem

BACKGROUND & AIMSnReceptor-stimulated Ca(2+) influx is a critical component of the Ca(2+) signal and mediates all cellular functions regulated by Ca(2+). However, excessive Ca(2+) influx is highly toxic, resulting in cell death, which is the nodal point in all forms of pancreatitis. Ca(2+) influx is mediated by store-operated channels (SOCs). The identity and function of the native SOCs in most cells is unknown.nnnMETHODSnHere, we determined the role of deletion of Trpc3 in mice on Ca(2+) signaling, exocytosis, intracellular trypsin activation, and pancreatitis.nnnRESULTSnDeletion of TRPC3 reduced the receptor-stimulated and SOC-mediated Ca(2+) influx by about 50%, indicating that TRPC3 functions as an SOC in vivo. The reduced Ca(2+) influx in TRPC3(-/-) acini resulted in reduced frequency of the physiologic Ca(2+) oscillations and of the pathologic sustained increase in cytosolic Ca(2+) levels caused by supramaximal stimulation and by the toxins bile acids and palmitoleic acid ethyl ester. Consequently, deletion of TRPC3 shifted the dose response for receptor-stimulated exocytosis and prevented the pathologic inhibition of digestive enzyme secretion at supramaximal agonist concentrations. Accordingly, deletion of TRPC3 markedly reduced intracellular trypsin activation and excessive actin depolymerization in vitro and the severity of pancreatitis in vivo.nnnCONCLUSIONSnThese findings establish the native TRPC3 as an SOC in vivo and a role for TRPC3-mediated Ca(2+) influx in the pathogenesis of acute pancreatitis and suggest that TRPC3 should be considered a target for prevention of pancreatic damage in acute pancreatitis.

Collaboration


Dive into the Joel Abramowitz's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Shmuel Muallem

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Yanhong Liao

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Fang Zheng

University of Texas Medical Branch

View shared research outputs
Top Co-Authors

Avatar

James S K Sham

Johns Hopkins University School of Medicine

View shared research outputs
Top Co-Authors

Avatar

Kevin D. Phelan

University of Arkansas for Medical Sciences

View shared research outputs
Top Co-Authors

Avatar

Michael X. Zhu

University of Texas Health Science Center at Houston

View shared research outputs
Researchain Logo
Decentralizing Knowledge