Joel Armstrong
University of California, Santa Cruz
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Joel Armstrong.
Nucleic Acids Research | 2015
Kate R. Rosenbloom; Joel Armstrong; Galt P. Barber; Jonathan Casper; Hiram Clawson; Mark Diekhans; Timothy R. Dreszer; Pauline A. Fujita; Luvina Guruvadoo; Maximilian Haeussler; Rachel A. Harte; Steven G. Heitner; Glenn Hickey; Angie S. Hinrichs; Robert Hubley; Donna Karolchik; Katrina Learned; Brian T. Lee; Chin H. Li; Karen H. Miga; Ngan Nguyen; Benedict Paten; Brian J. Raney; Arian Smit; Matthew L. Speir; Ann S. Zweig; David Haussler; Robert M. Kuhn; W. James Kent
Launched in 2001 to showcase the draft human genome assembly, the UCSC Genome Browser database (http://genome.ucsc.edu) and associated tools continue to grow, providing a comprehensive resource of genome assemblies and annotations to scientists and students worldwide. Highlights of the past year include the release of a browser for the first new human genome reference assembly in 4 years in December 2013 (GRCh38, UCSC hg38), a watershed comparative genomics annotation (100-species multiple alignment and conservation) and a novel distribution mechanism for the browser (GBiB: Genome Browser in a Box). We created browsers for new species (Chinese hamster, elephant shark, minke whale), ‘mined the web’ for DNA sequences and expanded the browser display with stacked color graphs and region highlighting. As our user community increasingly adopts the UCSC track hub and assembly hub representations for sharing large-scale genomic annotation data sets and genome sequencing projects, our menu of public data hubs has tripled.
Science | 2014
Richard E. Green; Edward L. Braun; Joel Armstrong; Dent Earl; Ngan Nguyen; Glenn Hickey; Michael W. Vandewege; John St. John; Salvador Capella-Gutiérrez; Todd A. Castoe; Colin Kern; Matthew K. Fujita; Juan C. Opazo; Jerzy Jurka; Kenji K. Kojima; Juan Caballero; Robert Hubley; Arian Smit; Roy N. Platt; Christine Lavoie; Meganathan P. Ramakodi; John W. Finger; Alexander Suh; Sally R. Isberg; Lee G. Miles; Amanda Y. Chong; Weerachai Jaratlerdsiri; Jaime Gongora; C. Moran; Andrés Iriarte
INTRODUCTION Crocodilians and birds are the two extant clades of archosaurs, a group that includes the extinct dinosaurs and pterosaurs. Fossils suggest that living crocodilians (alligators, crocodiles, and gharials) have a most recent common ancestor 80 to 100 million years ago. Extant crocodilians are notable for their distinct morphology, limited intraspecific variation, and slow karyotype evolution. Despite their unique biology and phylogenetic position, little is known about genome evolution within crocodilians. Evolutionary rates of tetrapods inferred from DNA sequences anchored by ultraconserved elements. Evolutionary rates among reptiles vary, with especially low rates among extant crocodilians but high rates among squamates. We have reconstructed the genomes of the common ancestor of birds and of all archosaurs (shown in gray silhouette, although the morphology of these species is uncertain). RATIONALE Genome sequences for the American alligator, saltwater crocodile, and Indian gharial—representatives of all three extant crocodilian families—were obtained to facilitate better understanding of the unique biology of this group and provide a context for studying avian genome evolution. Sequence data from these three crocodilians and birds also allow reconstruction of the ancestral archosaurian genome. RESULTS We sequenced shotgun genomic libraries from each species and used a variety of assembly strategies to obtain draft genomes for these three crocodilians. The assembled scaffold N50 was highest for the alligator (508 kilobases). Using a panel of reptile genome sequences, we generated phylogenies that confirm the sister relationship between crocodiles and gharials, the relationship with birds as members of extant Archosauria, and the outgroup status of turtles relative to birds and crocodilians. We also estimated evolutionary rates along branches of the tetrapod phylogeny using two approaches: ultraconserved element–anchored sequences and fourfold degenerate sites within stringently filtered orthologous gene alignments. Both analyses indicate that the rates of base substitution along the crocodilian and turtle lineages are extremely low. Supporting observations were made for transposable element content and for gene family evolution. Analysis of whole-genome alignments across a panel of reptiles and mammals showed that the rate of accumulation of micro-insertions and microdeletions is proportionally lower in crocodilians, consistent with a single underlying cause of a reduced rate of evolutionary change rather than intrinsic differences in base repair machinery. We hypothesize that this single cause may be a consistently longer generation time over the evolutionary history of Crocodylia. Low heterozygosity was observed in each genome, consistent with previous analyses, including the Chinese alligator. Pairwise sequential Markov chain analysis of regional heterozygosity indicates that during glacial cycles of the Pleistocene, each species suffered reductions in effective population size. The reduction was especially strong for the American alligator, whose current range extends farthest into regions of temperate climates. CONCLUSION We used crocodilian, avian, and outgroup genomes to reconstruct 584 megabases of the archosaurian common ancestor genome and the genomes of key ancestral nodes. The estimated accuracy of the archosaurian genome reconstruction is 91% and is higher for conserved regions such as genes. The reconstructed genome can be improved by adding more crocodilian and avian genome assemblies and may provide a unique window to the genomes of extinct organisms such as dinosaurs and pterosaurs. To provide context for the diversification of archosaurs—the group that includes crocodilians, dinosaurs, and birds—we generated draft genomes of three crocodilians: Alligator mississippiensis (the American alligator), Crocodylus porosus (the saltwater crocodile), and Gavialis gangeticus (the Indian gharial). We observed an exceptionally slow rate of genome evolution within crocodilians at all levels, including nucleotide substitutions, indels, transposable element content and movement, gene family evolution, and chromosomal synteny. When placed within the context of related taxa including birds and turtles, this suggests that the common ancestor of all of these taxa also exhibited slow genome evolution and that the comparatively rapid evolution is derived in birds. The data also provided the opportunity to analyze heterozygosity in crocodilians, which indicates a likely reduction in population size for all three taxa through the Pleistocene. Finally, these data combined with newly published bird genomes allowed us to reconstruct the partial genome of the common ancestor of archosaurs, thereby providing a tool to investigate the genetic starting material of crocodilians, birds, and dinosaurs.
Science | 2016
David Gordon; John Huddleston; Mark Chaisson; Christopher M. Hill; Zev N. Kronenberg; Katherine M. Munson; Maika Malig; Archana Raja; Ian T Fiddes; LaDeana W. Hillier; Christopher P. Dunn; Carl Baker; Joel Armstrong; Mark Diekhans; Benedict Paten; Jay Shendure; Richard Wilson; David Haussler; Chen Shan Chin; Evan E. Eichler
Improving on the gorilla genome Access to complete, high-quality genomes of nonhuman primates will also help us understand human biology. Gordon et al. used long-read sequencing technology to improve genome data on our close relative the gorilla. Sequencing from a single individual decreased assembly fragmentation and recovered previously missed genes and noncoding loci. Mapping short-read sequences from additional gorillas helped reconstruct a “pan” gorilla sequence documenting genetic variation. Comparison with human genomes revealed species-specific differences ranging in size from one to thousands of bases in length, including some that are likely to affect gene regulation. Science, this issue p. 10.1126/science.aae0344 A new approach to looking at the gorilla genome improves estimates of the differences between humans and gorillas. INTRODUCTION The accurate sequence and assembly of genomes is critical to our understanding of evolution and genetic variation. Despite advances in short-read sequencing technology that have decreased cost and increased throughput, whole-genome assembly of mammalian genomes remains problematic because of the presence of repetitive DNA. RATIONALE The goal of this study was to sequence and assemble the genome of the western lowland gorilla by using primarily single-molecule, real-time (SMRT) sequencing technology and a novel assembly algorithm that takes advantage of long (>10 kbp) sequence reads. We specifically compare the properties of this assembly to gorilla genome assemblies that were generated by using more routine short sequence read approaches in order to determine the value and biological impact of a long-read genome assembly. RESULTS We generated 74.8-fold SMRT whole-genome shotgun sequence from peripheral blood DNA isolated from a western lowland gorilla (Gorilla gorilla gorilla) named Susie. We applied a string graph assembly algorithm, Falcon, and consensus algorithm, Quiver, to generate a 3.1-Gbp assembly with a contig N50 of 9.6 Mbp. Short-read sequence data from an additional six gorilla genomes was mapped so as to reduce indel errors and improve the accuracy of the final assembly. We estimate that 98.9% of the gorilla euchromatin has been assembled into 1854 sequence contigs. The assembly represents an improvement in contiguity: >800-fold with respect to the published gorilla genome assembly and >180-fold with respect to a more recently released upgrade of the gorilla assembly. Most of the sequence gaps are now closed, considerably increasing the yield of complete gene models. We estimate that 87% of the missing exons and 94% of the incomplete genes are recovered. We find that the sequence of most full-length common repeats is resolved, with the most significant gains occurring for the longest and most G+C–rich retrotransposons. Although complex regions such as the major histocompatibility locus are accurately sequenced and assembled, both heterochromatin and large, high-identity segmental duplications are not because read lengths are insufficiently long to traverse these repetitive structures. The long-read assembly produces a much finer map of structural variation down to 50 bp in length, facilitating the discovery of thousands of lineage-specific structural variant differences that have occurred since divergence from the human and chimpanzee lineages. This includes the disruption of specific genes and loss of predicted regulatory regions between the two species. We show that use of the new gorilla genome assembly changes estimates of divergence and diversity, resulting in subtle but substantial effects on previous population genetic inferences, such as the timing of species bottlenecks and changes in the effective population size over the course of evolution. CONCLUSION The genome assembly that results from using the long-read data provides a more complete picture of gene content, structural variation, and repeat biology, improving population genetic and evolutionary inferences. Long-read sequencing technology now makes it practical for individual laboratories to generate high-quality reference genomes for complex mammalian genomes. Long-read sequence assembly of the gorilla genome. (A) Susie, a female Western lowland gorilla, was used as the reference sample for full-genome sequencing and assembly [photograph courtesy of Max Block]. (B and C) A treemaps representing the differences in fragmentation of the long-read and short-read gorilla genome assemblies. The rectangles are the largest contigs that cumulatively make up 300 Mbp (~10%) of the assembly. Accurate sequence and assembly of genomes is a critical first step for studies of genetic variation. We generated a high-quality assembly of the gorilla genome using single-molecule, real-time sequence technology and a string graph de novo assembly algorithm. The new assembly improves contiguity by two to three orders of magnitude with respect to previously released assemblies, recovering 87% of missing reference exons and incomplete gene models. Although regions of large, high-identity segmental duplications remain largely unresolved, this comprehensive assembly provides new biological insight into genetic diversity, structural variation, gene loss, and representation of repeat structures within the gorilla genome. The approach provides a path forward for the routine assembly of mammalian genomes at a level approaching that of the current quality of the human genome.
Nucleic Acids Research | 2018
Jonathan Casper; Ann S. Zweig; Chris Villarreal; Cath Tyner; Matthew L. Speir; Kate R. Rosenbloom; Brian J. Raney; Christopher M. Lee; Brian T. Lee; Donna Karolchik; Angie S. Hinrichs; Maximilian Haeussler; Luvina Guruvadoo; Jairo Navarro Gonzalez; David Gibson; Ian T Fiddes; Christopher Eisenhart; Mark Diekhans; Hiram Clawson; Galt P. Barber; Joel Armstrong; David Haussler; Robert M. Kuhn; W. James Kent
Abstract The UCSC Genome Browser (https://genome.ucsc.edu) provides a web interface for exploring annotated genome assemblies. The assemblies and annotation tracks are updated on an ongoing basis—12 assemblies and more than 28 tracks were added in the past year. Two recent additions are a display of CRISPR/Cas9 guide sequences and an interactive navigator for gene interactions. Other upgrades from the past year include a command-line version of the Variant Annotation Integrator, support for Human Genome Variation Society variant nomenclature input and output, and a revised highlighting tool that now supports multiple simultaneous regions and colors.
Nature Biotechnology | 2017
John Vivian; Arjun Arkal Rao; Frank Austin Nothaft; Christopher Ketchum; Joel Armstrong; Adam M. Novak; Jacob Pfeil; Jake Narkizian; Alden Deran; Audrey Musselman-Brown; Hannes Schmidt; Peter Amstutz; Brian Craft; Mary Goldman; Kate R. Rosenbloom; Melissa S. Cline; Brian O'Connor; Megan Hanna; Chet Birger; W. James Kent; David A. Patterson; Anthony D. Joseph; Jingchun Zhu; Sasha Zaranek; Gad Getz; David Haussler; Benedict Paten
1. Baker, M. Nature 533, 452–454 (2016). 2. Yachie, N. et al. Nat. Biotechnol. 35, 310–312 (2017). 3. Hadimioglu, B., Stearns, R. & Ellson, R. J. Lab. Autom. 21, 4–18 (2016). 4. ANSI SLAS 1–2004: Footprint dimensions; ANSI SLAS 2–2004: Height dimensions; ANSI SLAS 3–2004: Bottom outside flange dimensions; ANSI SLAS 4–2004: Well positions; (ANSI SLAS, 2004). 5. Mckernan, K. & Gustafson, E. in DNA Sequencing II: Optimizing Preparation and Cleanup (ed. Kieleczawa, J.) 9.128 (Jones and Bartlett Publishers, 2006). 6. Storch, M. et al. BASIC: a new biopart assembly standard for idempotent cloning provides accurate, singletier DNA assembly for synthetic biology. ACS Synth. Biol. 4, 781–787 (2015). open sharing of protocols. With a precise ontology to describe standardized protocols, it may be possible to share methods widely and create community standards. We envisage that in future individual research laboratories, or clusters of colocated laboratories, will have in-house, low-cost automation work cells but will access DNA foundries via the cloud to carry out complex experimental workflows. Technologies enabling this from companies such as Emerald Cloud Lab (S. San Francisco, CA, USA), Synthace (London) and Transcriptic (Menlo Park, CA, USA) could, for example, send experimental designs to foundries and return output data to a researcher. This ‘mixed economy’ should accelerate the development and sharing of standardized protocols and metrology standards and shift a growing proportion of molecular, cellular and synthetic biology into a fully quantitative and reproducible era.
Bioinformatics | 2014
Ngan Nguyen; Glenn Hickey; Brian J. Raney; Joel Armstrong; Hiram Clawson; Ann S. Zweig; Donna Karolchik; William James Kent; David Haussler; Benedict Paten
MOTIVATION Researchers now have access to large volumes of genome sequences for comparative analysis, some generated by the plethora of public sequencing projects and, increasingly, from individual efforts. It is not possible, or necessarily desirable, that the public genome browsers attempt to curate all these data. Instead, a wealth of powerful tools is emerging to empower users to create their own visualizations and browsers. RESULTS We introduce a pipeline to easily generate collections of Web-accessible UCSC Genome Browsers interrelated by an alignment. It is intended to democratize our comparative genomic browser resources, serving the broad and growing community of evolutionary genomicists and facilitating easy public sharing via the Internet. Using the alignment, all annotations and the alignment itself can be efficiently viewed with reference to any genome in the collection, symmetrically. A new, intelligently scaled alignment display makes it simple to view all changes between the genomes at all levels of resolution, from substitutions to complex structural rearrangements, including duplications. To demonstrate this work, we create a comparative assembly hub containing 57 Escherichia coli and 9 Shigella genomes and show examples that highlight their unique biology. AVAILABILITY AND IMPLEMENTATION The source code is available as open source at: https://github.com/glennhickey/progressiveCactus The E.coli and Shigella genome hub is now a public hub listed on the UCSC browser public hubs Web page.
Science | 2018
Zev N. Kronenberg; Ian T Fiddes; David Gordon; Shwetha Murali; Stuart Cantsilieris; Olivia S. Meyerson; Jason G. Underwood; Bradley J. Nelson; Mark Chaisson; Max Dougherty; Katherine M. Munson; Alex Hastie; Mark Diekhans; Fereydoun Hormozdiari; Nicola Lorusso; Kendra Hoekzema; Ruolan Qiu; Karen Clark; Archana Raja; AnneMarie E. Welch; Melanie Sorensen; Carl Baker; Robert S. Fulton; Joel Armstrong; Tina A. Graves-Lindsay; Ahmet M. Denli; Emma R. Hoppe; Pinghsun Hsieh; Christopher M. Hill; Andy Wing Chun Pang
A spotlight on great ape genomes Most nonhuman primate genomes generated to date have been “humanized” owing to their many gaps and the reliance on guidance by the reference human genome. To remove this humanizing effect, Kronenberg et al. generated and assembled long-read genomes of a chimpanzee, an orangutan, and two humans and compared them with a previously generated gorilla genome. This analysis recognized genomic structural variation specific to humans and particular ape lineages. Comparisons between human and chimpanzee cerebral organoids showed down-regulation of the expression of specific genes in humans, relative to chimpanzees, related to noncoding variation identified in this analysis. Science, this issue p. eaar6343 Analysis of long-read great ape and human genomes identifies human-specific changes affecting brain gene expression. INTRODUCTION Understanding the genetic differences that make us human is a long-standing endeavor that requires the comprehensive discovery and comparison of all forms of genetic variation within great ape lineages. RATIONALE The varied quality and completeness of ape genomes have limited comparative genetic analyses. To eliminate this contiguity and quality disparity, we generated human and nonhuman ape genome assemblies without the guidance of the human reference genome. These new genome assemblies enable both coarse and fine-scale comparative genomic studies. RESULTS We sequenced and assembled two human, one chimpanzee, and one orangutan genome using high-coverage (>65x) single-molecule, real-time (SMRT) long-read sequencing technology. We also sequenced more than 500,000 full-length complementary DNA samples from induced pluripotent stem cells to construct de novo gene models, increasing our knowledge of transcript diversity in each ape lineage. The new nonhuman ape genome assemblies improve gene annotation and genomic contiguity (by 30- to 500-fold), resulting in the identification of larger synteny blocks (by 22- to 74-fold) when compared to earlier assemblies. Including the latest gorilla genome, we now estimate that 83% of the ape genomes can be compared in a multiple sequence alignment. We observe a modest increase in single-nucleotide variant divergence compared to previous genome analyses and estimate that 36% of human autosomal DNA is subject to incomplete lineage sorting. We fully resolve most common repeat differences, including full-length retrotransposons such as the African ape-specific endogenous retroviral element PtERV1. We show that the spread of this element independently in the gorilla and chimpanzee lineage likely resulted from a founder element that failed to segregate to the human lineage because of incomplete lineage sorting. The improved sequence contiguity allowed a more systematic discovery of structural variation (>50 base pairs in length) (see the figure). We detected 614,186 ape deletions, insertions, and inversions, assigning each to specific ape lineages. Unbiased genome scaffolding (optical maps, bacterial artificial chromosome sequencing, and fluorescence in situ hybridization) led to the discovery of large, unknown complex inversions in gene-rich regions. Of the 17,789 fixed human-specific insertions and deletions, we focus on those of potential functional effect. We identify 90 that are predicted to disrupt genes and an additional 643 that likely affect regulatory regions, more than doubling the number of human-specific deletions that remove regulatory sequence in the human lineage. We investigate the association of structural variation with changes in human-chimpanzee brain gene expression using cerebral organoids as a proxy for expression differences. Genes associated with fixed structural variants (SVs) show a pattern of down-regulation in human radial glial neural progenitors, whereas human-specific duplications are associated with up-regulated genes in human radial glial and excitatory neurons (see the figure). CONCLUSION The improved ape genome assemblies provide the most comprehensive view to date of intermediate-size structural variation and highlight several dozen genes associated with structural variation and brain-expression differences between humans and chimpanzees. These new references will provide a stepping stone for the completion of great ape genomes at a quality commensurate with the human reference genome and, ultimately, an understanding of the genetic differences that make us human. SMRT assemblies and SV analyses. (Top) Contiguity of the de novo assemblies. (Bottom, left to right) For each ape, SVdetection was done against the human reference genome as represented by a dot plot of an inversion). Human-specific SVs, identified by comparing ape SVs and population genotyping (0/0, homozygous reference),were compared to single-cell gene expression differences [range: low (dark blue) to high (dark red)] in primary and organoid tissues. Each heatmap row is a gene that intersects an insertion or deletion (green), duplication (cyan), or inversion (light green). Genetic studies of human evolution require high-quality contiguous ape genome assemblies that are not guided by the human reference. We coupled long-read sequence assembly and full-length complementary DNA sequencing with a multiplatform scaffolding approach to produce ab initio chimpanzee and orangutan genome assemblies. By comparing these with two long-read de novo human genome assemblies and a gorilla genome assembly, we characterized lineage-specific and shared great ape genetic variation ranging from single– to mega–base pair–sized variants. We identified ~17,000 fixed human-specific structural variants identifying genic and putative regulatory changes that have emerged in humans since divergence from nonhuman apes. Interestingly, these variants are enriched near genes that are down-regulated in human compared to chimpanzee cerebral organoids, particularly in cells analogous to radial glial neural progenitors.
bioRxiv | 2016
John Vivian; Arjun Rao; Frank Austin Nothaft; Christopher Ketchum; Joel Armstrong; Adam M. Novak; Jacob Pfeil; Jake Narkizian; Alden Deran; Audrey Musselman-Brown; Hannes Schmidt; Peter Amstutz; Brian Craft; Mary Goldman; Kate R. Rosenbloom; Melissa S. Cline; Brian O'Connor; Megan Hanna; Chet Birger; W. James Kent; David A. Patterson; Anthony D. Joseph; Jingchun Zhu; Sasha Zaranek; Gad Getz; David Haussler; Benedict Paten
Toil is portable, open-source workflow software that supports contemporary workflow definition languages and can be used to securely and reproducibly run scientific workflows efficiently at large-scale. To demonstrate Toil, we processed over 20,000 RNA-seq samples to create a consistent meta-analysis of five datasets free of computational batch effects that we make freely available. Nearly all the samples were analysed in under four days using a commercial cloud cluster of 32,000 preemptable cores.
bioRxiv | 2018
Jingtao Lilue; Anthony G. Doran; Ian T Fiddes; Monica Abrudan; Joel Armstrong; Ruth Bennett; William Chow; Joanna Collins; Anne Czechanski; Petr Danecek; Mark Diekhans; Dirk-Dominic Dolle; Matthew Dunn; Richard Durbin; Dent Earl; Anne C. Ferguson-Smith; Paul Flicek; Jonathan Flint; Adam Frankish; Beiyuan Fu; Mark Gerstein; James Gilbert; Leo Goodstadt; Jennifer Harrow; Kerstin Howe; Mikhail Kolmogorov; Stefanie Koenig; Chris Lelliott; Jane Loveland; Richard Mott
The most commonly employed mammalian model organism is the laboratory mouse. A wide variety of genetically diverse inbred mouse strains, representing distinct physiological states, disease susceptibilities, and biological mechanisms have been developed over the last century. We report full length draft de novo genome assemblies for 16 of the most widely used inbred strains and reveal for the first time extensive strain-specific haplotype variation. We identify and characterise 2,567 regions on the current Genome Reference Consortium mouse reference genome exhibiting the greatest sequence diversity between strains. These regions are enriched for genes involved in defence and immunity, and exhibit enrichment of transposable elements and signatures of recent retrotransposition events. Combinations of alleles and genes unique to an individual strain are commonly observed at these loci, reflecting distinct strain phenotypes. Several immune related loci, some in previously identified QTLs for disease response have novel haplotypes not present in the reference that may explain the phenotype. We used these genomes to improve the mouse reference genome resulting in the completion of 10 new gene structures, and 62 new coding loci were added to the reference genome annotation. Notably this high quality collection of genomes revealed a previously unannotated gene (Efcab3-like) encoding 5,874 amino acids, one of the largest known in the rodent lineage. Interestingly, Efcab3-like−/− mice exhibit severe size anomalies in four regions of the brain suggesting a mechanism of Efcab3-like regulating brain development.
Genome Research | 2018
Tate Tunstall; Richard Kock; Jiri Vahala; Mark Diekhans; Ian T Fiddes; Joel Armstrong; Benedict Paten; Oliver A. Ryder; Cynthia C. Steiner
The critically endangered northern white rhinoceros is believed to be extinct in the wild, with the recent death of the last male leaving only two remaining individuals in captivity. Its extinction would appear inevitable, but the development of advanced cell and reproductive technologies such as cloning by nuclear transfer and the artificial production of gametes via stem cells differentiation offer a second chance for its survival. In this work, we analyzed genome-wide levels of genetic diversity, inbreeding, population history, and demography of the white rhinoceros sequenced from cryopreserved somatic cells, with the goal of informing how genetically valuable individuals could be used in future efforts toward the genetic rescue of the northern white rhinoceros. We present the first sequenced genomes of the northern white rhinoceros, which show relatively high levels of heterozygosity and an average genetic divergence of 0.1% compared with the southern subspecies. The two white rhinoceros subspecies appear to be closely related, with low genetic admixture and a divergent time <80,000 yr ago. Inbreeding, as measured by runs of homozygosity, appears slightly higher in the southern than the northern white rhinoceros. This work demonstrates the value of the northern white rhinoceros cryopreserved genetic material as a potential gene pool for saving this subspecies from extinction.