Joel C. Sunshine
Johns Hopkins University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Joel C. Sunshine.
The New England Journal of Medicine | 2016
Paul Nghiem; Shailender Bhatia; Evan J. Lipson; Ragini R. Kudchadkar; Natalie J. Miller; Lakshmanan Annamalai; Sneha Berry; Elliot Chartash; Adil Daud; Steven P. Fling; Philip Friedlander; Harriet M. Kluger; Holbrook Kohrt; Lisa Lundgren; Kim Margolin; Alan Mitchell; Thomas Olencki; Drew M. Pardoll; Sunil Reddy; Erica Shantha; William H. Sharfman; Elad Sharon; Lynn R. Shemanski; Michi M. Shinohara; Joel C. Sunshine; Janis M. Taube; John A. Thompson; Steven M. Townson; Jennifer H. Yearley; Suzanne L. Topalian
BACKGROUND Merkel-cell carcinoma is an aggressive skin cancer that is linked to exposure to ultraviolet light and the Merkel-cell polyomavirus (MCPyV). Advanced Merkel-cell carcinoma often responds to chemotherapy, but responses are transient. Blocking the programmed death 1 (PD-1) immune inhibitory pathway is of interest, because these tumors often express PD-L1, and MCPyV-specific T cells express PD-1. METHODS In this multicenter, phase 2, noncontrolled study, we assigned adults with advanced Merkel-cell carcinoma who had received no previous systemic therapy to receive pembrolizumab (anti-PD-1) at a dose of 2 mg per kilogram of body weight every 3 weeks. The primary end point was the objective response rate according to Response Evaluation Criteria in Solid Tumors, version 1.1. Efficacy was correlated with tumor viral status, as assessed by serologic and immunohistochemical testing. RESULTS A total of 26 patients received at least one dose of pembrolizumab. The objective response rate among the 25 patients with at least one evaluation during treatment was 56% (95% confidence interval [CI], 35 to 76); 4 patients had a complete response, and 10 had a partial response. With a median follow-up of 33 weeks (range, 7 to 53), relapses occurred in 2 of the 14 patients who had had a response (14%). The response duration ranged from at least 2.2 months to at least 9.7 months. The rate of progression-free survival at 6 months was 67% (95% CI, 49 to 86). A total of 17 of the 26 patients (65%) had virus-positive tumors. The response rate was 62% among patients with MCPyV-positive tumors (10 of 16 patients) and 44% among those with virus-negative tumors (4 of 9 patients). Drug-related grade 3 or 4 adverse events occurred in 15% of the patients. CONCLUSIONS In this study, first-line therapy with pembrolizumab in patients with advanced Merkel-cell carcinoma was associated with an objective response rate of 56%. Responses were observed in patients with virus-positive tumors and those with virus-negative tumors. (Funded by the National Cancer Institute and Merck; ClinicalTrials.gov number, NCT02267603.).
Nano Letters | 2009
Jae Seung Lee; Jordan J. Green; Kevin Love; Joel C. Sunshine; Robert Langer; Daniel G. Anderson
The safe and effective delivery of RNA therapeutics remains the major barrier to their broad clinical application. Here we develop a new nanoparticulate delivery system based on inorganic particles and biodegradable polycations. First, gold nanoparticles were modified with the hydrophilic polymer poly(ethylene glycol) (PEG), and then small interfering RNA (siRNA) was conjugated to the nanoparticles via biodegradable disulfide linkages, with approximately 30 strands of siRNA per nanoparticle. The particles were then coated with a library of end-modified poly(beta-amino ester)s (PBAEs), previously identified as capable of facilitating intracellular DNA delivery. Nanoparticulate formulations developed here facilitate high levels of in vitro siRNA delivery, facilitating delivery as good or better than the commercially available lipid reagent, Lipofectamine 2000.
Current Opinion in Pharmacology | 2015
Joel C. Sunshine; Janis M. Taube
Tumors may adopt normal physiologic checkpoints for immunomodulation leading to an imbalance between tumor growth and host surveillance. Antibodies targeting the PD-1/PD-L1 checkpoint have shown dynamic and durable tumor regressions, suggesting a rebalancing of the host-tumor interaction. Nivolumab and pembrolizumab are the anti-PD-1 antibodies that are currently the furthest in clinical development, and anti-PD-L1 agents under investigation include MPDL3280A, MEDI4736, and BMS-936559. These agents have been used to treat advanced melanoma, non-small cell lung cancer, renal cell carcinoma, bladder cancer and Hodgkin lymphoma, amongst other tumor types. In this article, we review the updated response results for early clinical trials, note recent FDA actions regarding this class of agents, and summarize results across trials looking at PD-L1 status as a predictor of response to anti-PD-1/PD-L1.
Advanced Materials | 2009
Joel C. Sunshine; Jordan J. Green; Kerry P. Mahon; Fan Yang; Ahmed A. Eltoukhy; David N. Nguyen; Robert Langer; Daniel G. Anderson
End-modified polymers are promising for the nonviral delivery of genes to cancer cells, immune cells, and human stem cells and point to polymer end-groups as regulators for cell-type specificity. A library of polymers has been synthesized and, although some polymers are strong transfection agents overall, for each cell type, a particular polymer is most effective.
Biomaterials | 2014
Joel C. Sunshine; Karlo Perica; Jonathan P. Schneck; Jordan J. Green
Previous work developing particle-based acellular, artificial antigen presenting cells (aAPCs) has focused exclusively on spherical platforms. To explore the role of shape, we generated ellipsoidal PLGA microparticles with varying aspect ratios (ARs) and synthesized aAPCs from them. The ellipsoidal biomimetic aAPCs with high-AR showed significantly enhanced in vitro and in vivo activity above spherical aAPCs with particle volume and antigen content held constant. Confocal imaging indicates that CD8+ T cells preferentially migrate to and are activated by interaction with the long axis of the aAPC. Importantly, enhanced activity of high-AR aAPCs was seen in a mouse melanoma model, with high-AR aAPCs improving melanoma survival compared to non-cognate aAPCs (p = 0.004) and cognate spherical aAPCs (p = 0.05). These findings indicate that particle geometry is a critical design criterion in the generation of aAPCs, and may offer insight into the essential role of geometry in the interaction between CD8+ T cells and biological APCs.
Molecular Pharmaceutics | 2012
Joel C. Sunshine; Daniel Y. Peng; Jordan J. Green
Development of nonviral particles for gene delivery requires a greater understanding of the properties that enable gene delivery particles to overcome the numerous barriers to intracellular DNA delivery. Linear poly(beta-amino) esters (PBAE) have shown substantial promise for gene delivery, but the mechanism behind their effectiveness is not well quantified with respect to these barriers. In this study, we synthesized, characterized, and evaluated for gene delivery an array of linear PBAEs that differed by small changes along the backbone, side chain, and end group of the polymers. We examined particle size and surface charge, polymer molecular weight, polymer degradation rate, buffering capacity, cellular uptake, transfection, and cytotoxicity of nanoparticles formulated with these polymers. Significantly, this is the first study that has quantified how small differential structural changes to polymers of this class modulate buffering capacity and polymer degradation rate and relates these findings to gene delivery efficacy. All polymers formed positively charged (zeta potential 21-29 mV) nanosized particles (∼150 nm). The polymers hydrolytically degraded quickly in physiological conditions, with half-lives ranging from 90 min to 6 h depending on polymer structure. The PBAE buffering capacities in the relevant pH range (pH 5.1-7.4) varied from 34% to 95% protonatable amines, and on a per mass basis, PBAEs buffered 1.4-4.6 mmol of H(+)/g. When compared to 25 kDa branched polyethyleneimine (PEI), PBAEs buffer significantly fewer protons/mass, as PEI buffers 6.2 mmol of H(+)/g over the same range. However, due to the relatively low cytotoxicity of PBAEs, higher polymer mass can be used to form particles than with PEI and total buffering capacity of PBAE-based particles significantly exceeds that of PEI. Uptake into COS-7 cells ranged from 0% to 95% of cells and transfection ranged from 0% to 93% of cells, depending on the base polymer structure and the end modifications examined. Five polymers achieved higher uptake and transfection efficacy with less toxicity than branched-PEI control. Surprisingly, acrylate-terminated base polymers were dramatically less efficacious than their end-capped versions, in terms of both uptake (1-3% for acrylate, 75-94% for end-capped) and transfection efficacy (0-1% vs 20-89%), even though there are minimal differences between acrylate and end-capped polymers in terms of DNA retardation in gel electrophoresis, particle size, zeta potential, and cytotoxicity. These studies further elucidate the role of polymer structure for gene delivery and highlight that small molecule end-group modification of a linear polymer can be critical for cellular uptake in a manner that is largely independent of polymer/DNA binding, particle size, and particle surface charge.
Biomacromolecules | 2011
Joel C. Sunshine; Marib I. Akanda; David X. Li; Kristen L. Kozielski; Jordan J. Green
A new 320-member polymer library of end-modified poly(β-amino ester)s was synthesized. This library was chosen such that small differences to the structures of component backbone, side-chain, and end-group monomers could be systematically and simultaneously evaluated. The in vitro transfection efficacy and cytotoxicity of DNA nanoparticles formed from this library were assessed. This library approach not only enabled us to synthesize and test a large variety of structures rapidly but also provided us with a robust data set to analyze for the effect of small structural permutations to polymer chain structure. Small changes to the side chains, backbones, and end groups within this polymer library produced dramatic results, with transfection efficacy of CMV-Luc varying over 4 orders in a 96-well plate format. Increasing hydrophobicity of the base polymer backbone and side chain tended to increase transfection efficacy, but the most hydrophobic side chains and backbones showed the least requirement for a hydrophobic pair. Optimal PBAE formulations were superior to commercially available nonviral alternatives FuGENE HD and Lipofectamine 2000, enabling ~3-fold increased luminescence (2.2 × 10(6) RLU/well vs 8.1 × 10(5) RLU/well) and 2-fold increased transfection percentage (76.7% vs 42.9%) as measured by flow cytometry with comparable or reduced toxicity.
Journal of the American Chemical Society | 2013
Corey J. Bishop; Tiia Maaria Ketola; Stephany Y. Tzeng; Joel C. Sunshine; Arto Urtti; Helge Lemmetyinen; Elina Vuorimaa-Laukkanen; Marjo Yliperttula; Jordan J. Green
Polymeric vectors for gene delivery are a promising alternative for clinical applications, as they are generally safer than viral counterparts. Our objective was to further our mechanistic understanding of polymer structure-function relationships to allow the rational design of new biomaterials. Utilizing poly(β-amino ester)s (PBAEs), we investigated polymer-DNA binding by systematically varying the polymer molecular weight, adding single carbons to the backbone and side chain of the monomers that constitute the polymers, and varying the type of polymer end group. We then sought to correlate how PBAE binding affects the polyplex diameter and ζ potential, the transfection efficacy, and its associated cytotoxicity in human breast and brain cancer cells in vitro. Among other trends, we observed in both cell lines that the PBAE-DNA binding constant is biphasic with the transfection efficacy and that the optimal values of the binding constant with respect to the transfection efficacy are in the range (1-6) × 10(4) M(-1). A binding constant in this range is necessary but not sufficient for effective transfection.
Biomaterials | 2010
Nupura S. Bhise; Ryan S. Gray; Joel C. Sunshine; Soe Htet; Andrew J. Ewald; Jordan J. Green
Non-viral gene delivery vectors were developed for efficient gene transfer to hard-to-transfect mouse mammary epithelial cells. Ten modified versions of the same base poly(beta-amino ester), poly(1,4-butanediol diacrylate-co-5-amino-1-pentanol), were tested in both traditional 2-D monolayer and in 3-D organotypic cultures. The polymers self-assembled with plasmid DNA encoding enhanced green fluorescent protein to form nanoparticles (approximately 100 nm) used to transfect the cells. Nanoparticle transfection efficacy was tuned by changes in synthesis and fabrication conditions and the transfection efficacy was analyzed using confocal microscopy and flow cytometry. The best performing polymeric nanoparticles transfected 57 +/- 6% of the cells in 2-D culture and 6 +/- 1% of the cells in 3-D culture. Small modifications to the polymer end-capping molecules and tuning of polymer molecular weight could either significantly enhance the transfection efficacy up to 6-fold or instead abolish efficacy completely. The efficacy of leading polymers was higher than that of the commercial transfection agent FuGENE HD by a factor of 13 in 2-D and 2 in 3-D. These non-viral nanoparticles may be useful as delivery reagents or targeted therapeutics for breast cancer. This gene delivery strategy is also a promising approach for studying the normal development of the mammary gland.
Proceedings of the National Academy of Sciences of the United States of America | 2016
Ludmila Danilova; Hao Wang; Joel C. Sunshine; Genevieve J. Kaunitz; Tricia R. Cottrell; Haiying Xu; Jessica Esandrio; Robert A. Anders; Leslie Cope; Drew M. Pardoll; Charles G. Drake; Janis M. Taube
Significance The Cancer Genome Atlas datasets were used in the current study to explore the relationship of programmed death ligand-1 (PD-L1) expression, a cytotoxic T-cell gene signature, and mutational load to each other, to immunoactive factors, such as programmed cell death protein-1 (PD-1), PD-L2, and other checkpoint molecules, and to survival across multiple solid tumor types. We found that PD-L2 expression is more closely related to an ongoing host immune response in certain tumor types than PD-L1. Notably, mutational load was not immediately related to inflammation in any tumor type studied, and was inferior to an inflamed tumor microenvironment for predicting survival in patients with metastatic melanoma. Our findings also indicate the need for biomarker assays that are tumor-type–specific and include both expression studies and genomic profiling. Programmed cell death protein-1 (PD-1)/programmed death ligand-1 (PD-L1) checkpoint blockade has led to remarkable and durable objective responses in a number of different tumor types. A better understanding of factors associated with the PD-1/PD-L axis expression is desirable, as it informs their potential role as prognostic and predictive biomarkers and may suggest rational treatment combinations. In the current study, we analyzed PD-L1, PD-L2, PD-1, and cytolytic activity (CYT) expression, as well as mutational density from melanoma and eight other solid tumor types using The Cancer Genome Atlas database. We found that in some tumor types, PD-L2 expression is more closely linked to Th1/IFNG expression and PD-1 and CD8 signaling than PD-L1. In contrast, mutational load was not correlated with a Th1/IFNG gene signature in any tumor type. PD-L1, PD-L2, PD-1, CYT expression, and mutational density are all positive prognostic features in melanoma, and conditional inference modeling revealed PD-1/CYT expression (i.e., an inflamed tumor microenvironment) as the most impactful feature, followed by mutational density. This study elucidates the highly interdependent nature of these parameters, and also indicates that future biomarkers for anti–PD-1/PD-L1 will benefit from tumor-type–specific, integrated, mRNA, protein, and genomic approaches.