Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Joel F. Gibson is active.

Publication


Featured researches published by Joel F. Gibson.


Molecular Ecology | 2012

Next-generation sequencing technologies for environmental DNA research.

Shadi Shokralla; Jennifer L. Spall; Joel F. Gibson; Mehrdad Hajibabaei

Since 2005, advances in next‐generation sequencing technologies have revolutionized biological science. The analysis of environmental DNA through the use of specific gene markers such as species‐specific DNA barcodes has been a key application of next‐generation sequencing technologies in ecological and environmental research. Access to parallel, massive amounts of sequencing data, as well as subsequent improvements in read length and throughput of different sequencing platforms, is leading to a better representation of sample diversity at a reasonable cost. New technologies are being developed rapidly and have the potential to dramatically accelerate ecological and environmental research. The fast pace of development and improvements in next‐generation sequencing technologies can reflect on broader and more robust applications in environmental DNA research. Here, we review the advantages and limitations of current next‐generation sequencing technologies in regard to their application for environmental DNA analysis.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Simultaneous assessment of the macrobiome and microbiome in a bulk sample of tropical arthropods through DNA metasystematics

Joel F. Gibson; Shadi Shokralla; Teresita M. Porter; Ian King; Steven van Konynenburg; Daniel H. Janzen; Winnie Hallwachs; Mehrdad Hajibabaei

Significance Ecological and evolutionary investigations require accurate and high-resolution biodiversity information. Conventional morphological approaches to identifying species in species-rich tropical ecosystems are often unavailable or incapable of timely, cost-effective identification. We show that next-generation sequencing (NGS) of cytochrome c oxidase subunit I (COI) DNA barcodes can accurately detect 83.5% of individually sequenced species (corresponding to 91% of individuals) in a bulk sample of terrestrial arthropods from a Costa Rican species-rich site. Additionally, the 16S and 18S ribosomal DNA gene regions obtained also provide an assessment of the bacteria and protozoa in the bulk sample. This metasystematic approach provides the initial infrastructure for a next generation of biodiversity assessment and environmental monitoring. It can lead to more effective understanding, appreciation, and management of complex ecosystems. Conventional assessments of ecosystem sample composition are based on morphology-based or DNA barcode identification of individuals. Both approaches are costly and time-consuming, especially when applied to the large number of specimens and taxa commonly included in ecological investigations. Next-generation sequencing approaches can overcome the bottleneck of individual specimen isolation and identification by simultaneously sequencing specimens of all taxa in a bulk mixture. Here we apply multiple parallel amplification primers, multiple DNA barcode markers, 454-pyrosequencing, and Illumina MiSeq sequencing to the same sample to maximize recovery of the arthropod macrobiome and the bacterial and other microbial microbiome of a bulk arthropod sample. We validate this method with a complex sample containing 1,066 morphologically distinguishable arthropods from a tropical terrestrial ecosystem with high taxonomic diversity. Multiamplicon next-generation DNA barcoding was able to recover sequences corresponding to 91% of the distinguishable individuals in a bulk environmental sample, as well as many species present as undistinguishable tissue. 454-pyrosequencing was able to recover 10 more families of arthropods and 30 more species than did conventional Sanger sequencing of each individual specimen. The use of other loci (16S and 18S ribosomal DNA gene regions) also added the detection of species of microbes associated with these terrestrial arthropods. This method greatly decreases the time and money necessary to perform DNA-based comparisons of biodiversity among ecosystem samples. This methodology opens the door to much cheaper and increased capacity for ecological and evolutionary studies applicable to a wide range of socio-economic issues, as well as a basic understanding of how the world works.


Molecular Ecology Resources | 2014

Next‐generation DNA barcoding: using next‐generation sequencing to enhance and accelerate DNA barcode capture from single specimens

Shadi Shokralla; Joel F. Gibson; Hamid Nikbakht; Daniel H. Janzen; Winnie Hallwachs; Mehrdad Hajibabaei

DNA barcoding is an efficient method to identify specimens and to detect undescribed/cryptic species. Sanger sequencing of individual specimens is the standard approach in generating large‐scale DNA barcode libraries and identifying unknowns. However, the Sanger sequencing technology is, in some respects, inferior to next‐generation sequencers, which are capable of producing millions of sequence reads simultaneously. Additionally, direct Sanger sequencing of DNA barcode amplicons, as practiced in most DNA barcoding procedures, is hampered by the need for relatively high‐target amplicon yield, coamplification of nuclear mitochondrial pseudogenes, confusion with sequences from intracellular endosymbiotic bacteria (e.g. Wolbachia) and instances of intraindividual variability (i.e. heteroplasmy). Any of these situations can lead to failed Sanger sequencing attempts or ambiguity of the generated DNA barcodes. Here, we demonstrate the potential application of next‐generation sequencing platforms for parallel acquisition of DNA barcode sequences from hundreds of specimens simultaneously. To facilitate retrieval of sequences obtained from individual specimens, we tag individual specimens during PCR amplification using unique 10‐mer oligonucleotides attached to DNA barcoding PCR primers. We employ 454 pyrosequencing to recover full‐length DNA barcodes of 190 specimens using 12.5% capacity of a 454 sequencing run (i.e. two lanes of a 16 lane run). We obtained an average of 143 sequence reads for each individual specimen. The sequences produced are full‐length DNA barcodes for all but one of the included specimens. In a subset of samples, we also detected Wolbachia, nontarget species, and heteroplasmic sequences. Next‐generation sequencing is of great value because of its protocol simplicity, greatly reduced cost per barcode read, faster throughout and added information content.


Scientific Reports | 2015

Massively parallel multiplex DNA sequencing for specimen identification using an Illumina MiSeq platform

Shadi Shokralla; Teresita M. Porter; Joel F. Gibson; Rafal Dobosz; Daniel H. Janzen; Winnie Hallwachs; G. Brian Golding; Mehrdad Hajibabaei

Genetic information is a valuable component of biosystematics, especially specimen identification through the use of species-specific DNA barcodes. Although many genomics applications have shifted to High-Throughput Sequencing (HTS) or Next-Generation Sequencing (NGS) technologies, sample identification (e.g., via DNA barcoding) is still most often done with Sanger sequencing. Here, we present a scalable double dual-indexing approach using an Illumina Miseq platform to sequence DNA barcode markers. We achieved 97.3% success by using half of an Illumina Miseq flowcell to obtain 658 base pairs of the cytochrome c oxidase I DNA barcode in 1,010 specimens from eleven orders of arthropods. Our approach recovers a greater proportion of DNA barcode sequences from individuals than does conventional Sanger sequencing, while at the same time reducing both per specimen costs and labor time by nearly 80%. In addition, the use of HTS allows the recovery of multiple sequences per specimen, for deeper analysis of genetic variation in target gene regions.


PLOS ONE | 2015

Large-Scale Biomonitoring of Remote and Threatened Ecosystems via High-Throughput Sequencing.

Joel F. Gibson; Shadi Shokralla; Colin J. Curry; Donald J. Baird; Wendy A. Monk; Ian King; Mehrdad Hajibabaei

Biodiversity metrics are critical for assessment and monitoring of ecosystems threatened by anthropogenic stressors. Existing sorting and identification methods are too expensive and labour-intensive to be scaled up to meet management needs. Alternately, a high-throughput DNA sequencing approach could be used to determine biodiversity metrics from bulk environmental samples collected as part of a large-scale biomonitoring program. Here we show that both morphological and DNA sequence-based analyses are suitable for recovery of individual taxonomic richness, estimation of proportional abundance, and calculation of biodiversity metrics using a set of 24 benthic samples collected in the Peace-Athabasca Delta region of Canada. The high-throughput sequencing approach was able to recover all metrics with a higher degree of taxonomic resolution than morphological analysis. The reduced cost and increased capacity of DNA sequence-based approaches will finally allow environmental monitoring programs to operate at the geographical and temporal scale required by industrial and regulatory end-users.


Molecular Ecology Resources | 2014

Rapid and accurate taxonomic classification of insect (class Insecta) cytochrome c oxidase subunit 1 (COI) DNA barcode sequences using a naïve Bayesian classifier

Teresita M. Porter; Joel F. Gibson; Shadi Shokralla; Donald J. Baird; G. Brian Golding; Mehrdad Hajibabaei

Current methods to identify unknown insect (class Insecta) cytochrome c oxidase (COI barcode) sequences often rely on thresholds of distances that can be difficult to define, sequence similarity cut‐offs, or monophyly. Some of the most commonly used metagenomic classification methods do not provide a measure of confidence for the taxonomic assignments they provide. The aim of this study was to use a naïve Bayesian classifier (Wang et al. Applied and Environmental Microbiology, 2007; 73: 5261) to automate taxonomic assignments for large batches of insect COI sequences such as data obtained from high‐throughput environmental sequencing. This method provides rank‐flexible taxonomic assignments with an associated bootstrap support value, and it is faster than the blast‐based methods commonly used in environmental sequence surveys. We have developed and rigorously tested the performance of three different training sets using leave‐one‐out cross‐validation, two field data sets, and targeted testing of Lepidoptera, Diptera and Mantodea sequences obtained from the Barcode of Life Data system. We found that type I error rates, incorrect taxonomic assignments with a high bootstrap support, were already relatively low but could be lowered further by ensuring that all query taxa are actually present in the reference database. Choosing bootstrap support cut‐offs according to query length and summarizing taxonomic assignments to more inclusive ranks can also help to reduce error while retaining the maximum number of assignments. Additionally, we highlight gaps in the taxonomic and geographic representation of insects in public sequence databases that will require further work by taxonomists to improve the quality of assignments generated using any method.


BMC Evolutionary Biology | 2014

Mitochondrial and nuclear phylogenetic analysis with Sanger and next-generation sequencing shows that, in Área de Conservación Guanacaste, northwestern Costa Rica, the skipper butterfly named Urbanus belli(family Hesperiidae) comprises three morphologically cryptic species

Claudia Bertrand; Daniel H. Janzen; Winnie Hallwachs; John M. Burns; Joel F. Gibson; Shadi Shokralla; Mehrdad Hajibabaei

BackgroundSkipper butterflies (Hesperiidae) are a relatively well-studied family of Lepidoptera. However, a combination of DNA barcodes, morphology, and natural history data has revealed several cryptic species complexes within them. Here, we investigate three DNA barcode lineages of what has been identified as Urbanus belli (Hesperiidae, Eudaminae) in Área de Conservación Guanacaste (ACG), northwestern Costa Rica.ResultsAlthough no morphological traits appear to distinguish among the three, congruent nuclear and mitochondrial lineage patterns show that “Urbanus belli” in ACG is a complex of three sympatric species. A single strain of Wolbachia present in two of the three cryptic species indicates that Urbanus segnestami Burns (formerly Urbanus belliDHJ01), Urbanus bernikerni Burns (formerly Urbanus belliDHJ02), and Urbanus ehakernae Burns (formerly Urbanus belliDHJ03) may be biologically separated by Wolbachia, as well as by their genetics. Use of parallel sequencing through 454-pyrosequencing improved the utility of ITS2 as a phylogenetic marker and permitted examination of the intra- and interlineage relationships of ITS2 variants within the species complex. Interlineage, intralineage and intragenomic compensatory base pair changes were discovered in the secondary structure of ITS2.ConclusionThese findings corroborate the existence of three cryptic species. Our confirmation of a novel cryptic species complex, initially suggested by DNA barcode lineages, argues for using a multi-marker approach coupled with next-generation sequencing for exploration of other suspected species complexes.


Ecology and Evolution | 2015

Discrimination of grasshopper (Orthoptera: Acrididae) diet and niche overlap using next-generation sequencing of gut contents

Beverly McClenaghan; Joel F. Gibson; Shadi Shokralla; Mehrdad Hajibabaei

Species of grasshopper have been divided into three diet classifications based on mandible morphology: forbivorous (specialist on forbs), graminivorous (specialist on grasses), and mixed feeding (broad-scale generalists). For example, Melanoplus bivittatus and Dissosteira carolina are presumed to be broad-scale generalists, Chortophaga viridifasciata is a specialist on grasses, and Melanoplus femurrubrum is a specialist on forbs. These classifications, however, have not been verified in the wild. Multiple specimens of these four species were collected, and diet analysis was performed using DNA metabarcoding of the gut contents. The rbcLa gene region was amplified and sequenced using Illumina MiSeq sequencing. Levins’ measure and the Shannon–Wiener measure of niche breadth were calculated using family-level identifications and Morisita’s measure of niche overlap was calculated using operational taxonomic units (OTUs). Gut contents confirm both D. carolina and M. bivittatus as generalists and C. viridifasciata as a specialist on grasses. For M. femurrubrum, a high niche breadth was observed and species of grasses were identified in the gut as well as forbs. Niche overlap values did not follow predicted patterns, however, the low values suggest low competition between these species.


bioRxiv | 2016

Environmental DNA Barcode Sequence Capture: Targeted, PCR-free Sequence Capture for Biodiversity Analysis from Bulk Environmental Samples

Shadi Shokralla; Joel F. Gibson; Ian King; Donald J. Baird; Daniel H. Janzen; Winnie Hallwachs; Mehrdad Hajibabaei

Environmental DNA analysis using PCR amplified marker genes has been a key application of high-throughput sequencing (HTS). However, PCR bias is a major drawback to gain accurate qualitative and quantitative biodiversity data. We developed a PCR-free approach using enrichment baits for species-specific mitochondrial cytochrome c oxidase 1(COI) DNA barcodes. The sequence capture was tested on species-rich bulk terrestrial and aquatic benthic samples. Hybridization capture recovered an average of 6 and 4.7 more arthropod orders than amplicon sequencing for terrestrial and benthic samples, respectively. For the terrestrial sample, the four most abundant arthropod orders comprised 94.0% of the sample biomass. These same four orders comprised 95.5% and 97.5% of the COI sequences recovered by amplification and capture, respectively. Hybridization capture recovered three arthropod orders that were detected by biomass analysis, but not by amplicon sequencing and two other insect orders that were not detected by either biomass or amplicon methods. These results indicate the advantage of using sequence capture for a more accurate analysis of biodiversity in bulk environmental samples. The protocol can be easily customized to other DNA barcode markers or gene regions of interest for a wide range of taxa or for a specific target group.


Cladistics | 2013

A phylogenetic analysis of relationships among genera of Conopidae (Diptera) based on molecular and morphological data

Joel F. Gibson; Jeffrey H. Skevington; Scott Kelso

Members of the family Conopidae (Diptera) have been the focus of little targeted phylogenetic research. The most comprehensive test of phylogenetic support for the present subfamily classification of Conopidae is presented here using 66 specimens, including 59 species of Conopidae and seven outgroup taxa. Relationships among subfamily clades are also explored. A total of 6824 bp of DNA sequence data from five gene regions (12S ribosomal DNA, cytochrome c oxidase subunit I, cytochrome b, 28S ribosomal DNA and alanyl‐tRNA synthetase) are combined with 111 morphological characters in a combined analysis using both parsimony and Bayesian methods. Parsimony analysis recovers three shortest trees. Bayesian analysis recovers a nearly identical tree. Five monophyletic subfamilies of Conopidae are recovered. The rarely acknowledged Zodioninae is restored, including the genera Zodion and Parazodion. The genus Sicus is removed from Myopinae. Morphological synapomorphies are discussed for each subfamily and inter‐subfamily clade, including a comprehensive review of the character interpretaions of previous authors. Included are detailed comparative illustrations of male and female genitalia of representatives of all five subfamilies with new morphological interpretation.

Collaboration


Dive into the Joel F. Gibson's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Donald J. Baird

University of New Brunswick

View shared research outputs
Top Co-Authors

Avatar

Daniel H. Janzen

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Winnie Hallwachs

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Colin J. Curry

University of New Brunswick

View shared research outputs
Top Co-Authors

Avatar

Ian King

University of Guelph

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jeffrey H. Skevington

Agriculture and Agri-Food Canada

View shared research outputs
Researchain Logo
Decentralizing Knowledge