Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mehrdad Hajibabaei is active.

Publication


Featured researches published by Mehrdad Hajibabaei.


Proceedings of the National Academy of Sciences of the United States of America | 2009

A DNA barcode for land plants

Peter M. Hollingsworth; Laura L. Forrest; John L. Spouge; Mehrdad Hajibabaei; Sujeevan Ratnasingham; Michelle van der Bank; Mark W. Chase; Robyn S. Cowan; David L. Erickson; Aron J. Fazekas; Sean W. Graham; Karen E. James; Ki Joong Kim; W. John Kress; Harald Schneider; Jonathan van AlphenStahl; Spencer C. H. Barrett; Cássio van den Berg; Diego Bogarín; Kevin S. Burgess; Kenneth M. Cameron; Mark A. Carine; Juliana Chacón; Alexandra Clark; James J. Clarkson; Ferozah Conrad; Dion S. Devey; Caroline S. Ford; Terry A. Hedderson; Michelle L. Hollingsworth

DNA barcoding involves sequencing a standard region of DNA as a tool for species identification. However, there has been no agreement on which region(s) should be used for barcoding land plants. To provide a community recommendation on a standard plant barcode, we have compared the performance of 7 leading candidate plastid DNA regions (atpF–atpH spacer, matK gene, rbcL gene, rpoB gene, rpoC1 gene, psbK–psbI spacer, and trnH–psbA spacer). Based on assessments of recoverability, sequence quality, and levels of species discrimination, we recommend the 2-locus combination of rbcL+matK as the plant barcode. This core 2-locus barcode will provide a universal framework for the routine use of DNA sequence data to identify specimens and contribute toward the discovery of overlooked species of land plants.


PLOS ONE | 2008

Multiple Multilocus DNA Barcodes from the Plastid Genome Discriminate Plant Species Equally Well

Aron J. Fazekas; Kevin S. Burgess; Prasad R. Kesanakurti; Sean W. Graham; Steven G. Newmaster; Brian C. Husband; Diana M. Percy; Mehrdad Hajibabaei; Spencer C. H. Barrett

A universal barcode system for land plants would be a valuable resource, with potential utility in fields as diverse as ecology, floristics, law enforcement and industry. However, the application of plant barcoding has been constrained by a lack of consensus regarding the most variable and technically practical DNA region(s). We compared eight candidate plant barcoding regions from the plastome and one from the mitochondrial genome for how well they discriminated the monophyly of 92 species in 32 diverse genera of land plants (N = 251 samples). The plastid markers comprise portions of five coding (rpoB, rpoC1, rbcL, matK and 23S rDNA) and three non-coding (trnH-psbA, atpF–atpH, and psbK–psbI) loci. Our survey included several taxonomically complex groups, and in all cases we examined multiple populations and species. The regions differed in their ability to discriminate species, and in ease of retrieval, in terms of amplification and sequencing success. Single locus resolution ranged from 7% (23S rDNA) to 59% (trnH-psbA) of species with well-supported monophyly. Sequence recovery rates were related primarily to amplification success (85–100% for plastid loci), with matK requiring the greatest effort to achieve reasonable recovery (88% using 10 primer pairs). Several loci (matK, psbK–psbI, trnH-psbA) were problematic for generating fully bidirectional sequences. Setting aside technical issues related to amplification and sequencing, combining the more variable plastid markers provided clear benefits for resolving species, although with diminishing returns, as all combinations assessed using four to seven regions had only marginally different success rates (69–71%; values that were approached by several two- and three-region combinations). This performance plateau may indicate fundamental upper limits on the precision of species discrimination that is possible with DNA barcoding systems that include moderate numbers of plastid markers. Resolution to the contentious debate on plant barcoding should therefore involve increased attention to practical issues related to the ease of sequence recovery, global alignability, and marker redundancy in multilocus plant DNA barcoding systems.


Molecular Ecology | 2012

Next-generation sequencing technologies for environmental DNA research.

Shadi Shokralla; Jennifer L. Spall; Joel F. Gibson; Mehrdad Hajibabaei

Since 2005, advances in next‐generation sequencing technologies have revolutionized biological science. The analysis of environmental DNA through the use of specific gene markers such as species‐specific DNA barcodes has been a key application of next‐generation sequencing technologies in ecological and environmental research. Access to parallel, massive amounts of sequencing data, as well as subsequent improvements in read length and throughput of different sequencing platforms, is leading to a better representation of sample diversity at a reasonable cost. New technologies are being developed rapidly and have the potential to dramatically accelerate ecological and environmental research. The fast pace of development and improvements in next‐generation sequencing technologies can reflect on broader and more robust applications in environmental DNA research. Here, we review the advantages and limitations of current next‐generation sequencing technologies in regard to their application for environmental DNA analysis.


Philosophical Transactions of the Royal Society B | 2005

Critical factors for assembling a high volume of DNA barcodes

Mehrdad Hajibabaei; Jeremy R. deWaard; Natalia V. Ivanova; Sujeevan Ratnasingham; Robert T. Dooh; Stephanie L. Kirk; Paula M. Mackie; Paul D. N. Hebert

Large-scale DNA barcoding projects are now moving toward activation while the creation of a comprehensive barcode library for eukaryotes will ultimately require the acquisition of some 100 million barcodes. To satisfy this need, analytical facilities must adopt protocols that can support the rapid, cost-effective assembly of barcodes. In this paper we discuss the prospects for establishing high volume DNA barcoding facilities by evaluating key steps in the analytical chain from specimens to barcodes. Alliances with members of the taxonomic community represent the most effective strategy for provisioning the analytical chain with specimens. The optimal protocols for DNA extraction and subsequent PCR amplification of the barcode region depend strongly on their condition, but production targets of 100K barcode records per year are now feasible for facilities working with compliant specimens. The analysis of museum collections is currently challenging, but PCR cocktails that combine polymerases with repair enzyme(s) promise future success. Barcode analysis is already a cost-effective option for species identification in some situations and this will increasingly be the case as reference libraries are assembled and analytical protocols are simplified.


BMC Genomics | 2008

A universal DNA mini-barcode for biodiversity analysis

Isabelle Meusnier; Gregory A. C. Singer; Jean-François Landry; Donal A. Hickey; Paul D. N. Hebert; Mehrdad Hajibabaei

BackgroundThe goal of DNA barcoding is to develop a species-specific sequence library for all eukaryotes. A 650 bp fragment of the cytochrome c oxidase 1 (CO1) gene has been used successfully for species-level identification in several animal groups. It may be difficult in practice, however, to retrieve a 650 bp fragment from archival specimens, (because of DNA degradation) or from environmental samples (where universal primers are needed).ResultsWe used a bioinformatics analysis using all CO1 barcode sequences from GenBank and calculated the probability of having species-specific barcodes for varied size fragments. This analysis established the potential of much smaller fragments, mini-barcodes, for identifying unknown specimens. We then developed a universal primer set for the amplification of mini-barcodes. We further successfully tested the utility of this primer set on a comprehensive set of taxa from all major eukaryotic groups as well as archival specimens.ConclusionIn this study we address the important issue of minimum amount of sequence information required for identifying species in DNA barcoding. We establish a novel approach based on a much shorter barcode sequence and demonstrate its effectiveness in archival specimens. This approach will significantly broaden the application of DNA barcoding in biodiversity studies.


PLOS ONE | 2011

Environmental barcoding: A next-generation sequencing approach for biomonitoring applications using river benthos

Mehrdad Hajibabaei; Shadi Shokralla; Xin Zhou; Gregory A. C. Singer; Donald J. Baird

Timely and accurate biodiversity analysis poses an ongoing challenge for the success of biomonitoring programs. Morphology-based identification of bioindicator taxa is time consuming, and rarely supports species-level resolution especially for immature life stages. Much work has been done in the past decade to develop alternative approaches for biodiversity analysis using DNA sequence-based approaches such as molecular phylogenetics and DNA barcoding. On-going assembly of DNA barcode reference libraries will provide the basis for a DNA-based identification system. The use of recently introduced next-generation sequencing (NGS) approaches in biodiversity science has the potential to further extend the application of DNA information for routine biomonitoring applications to an unprecedented scale. Here we demonstrate the feasibility of using 454 massively parallel pyrosequencing for species-level analysis of freshwater benthic macroinvertebrate taxa commonly used for biomonitoring. We designed our experiments in order to directly compare morphology-based, Sanger sequencing DNA barcoding, and next-generation environmental barcoding approaches. Our results show the ability of 454 pyrosequencing of mini-barcodes to accurately identify all species with more than 1% abundance in the pooled mixture. Although the approach failed to identify 6 rare species in the mixture, the presence of sequences from 9 species that were not represented by individuals in the mixture provides evidence that DNA based analysis may yet provide a valuable approach in finding rare species in bulk environmental samples. We further demonstrate the application of the environmental barcoding approach by comparing benthic macroinvertebrates from an urban region to those obtained from a conservation area. Although considerable effort will be required to robustly optimize NGS tools to identify species from bulk environmental samples, our results indicate the potential of an environmental barcoding approach for biomonitoring programs.


Molecular Ecology | 2012

Environmental DNA: ENVIRONMENTAL DNA

Pierre Taberlet; Eric Coissac; Mehrdad Hajibabaei; Loren H. Rieseberg

PIERRE TABERLET,* ERIC COISSAC,* MEHRDAD HAJIBABAEI† and LOREN H. RIESEBERG,‡§ *Laboratoire d’Ecologie Alpine, CNRS UMR 5553, Université Joseph Fourier, BP 53, F-38041 Grenoble Cedex 9, France, †Biodiversity Institute of Ontario, Department of Integrative Biology, University of Guelph, Guelph, Ontario, N1G 2W1, Canada, ‡Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada, §Department of Biology, Indiana University, Bloomington, IN 47405, USA


Philosophical Transactions of the Royal Society B | 2005

Wedding biodiversity inventory of a large and complex Lepidoptera fauna with DNA barcoding

Daniel H. Janzen; Mehrdad Hajibabaei; John M. Burns; Winnie Hallwachs; Ed Remigio; Paul D. N. Hebert

By facilitating bioliteracy, DNA barcoding has the potential to improve the way the world relates to wild biodiversity. Here we describe the early stages of the use of cox1 barcoding to supplement and strengthen the taxonomic platform underpinning the inventory of thousands of sympatric species of caterpillars in tropical dry forest, cloud forest and rain forest in northwestern Costa Rica. The results show that barcoding a biologically complex biota unambiguously distinguishes among 97% of more than 1000 species of reared Lepidoptera. Those few species whose barcodes overlap are closely related and not confused with other species. Barcoding also has revealed a substantial number of cryptic species among morphologically defined species, associated sexes, and reinforced identification of species that are difficult to distinguish morphologically. For barcoding to achieve its full potential, (i) ability to rapidly and cheaply barcode older museum specimens is urgent, (ii) museums need to address the opportunity and responsibility for housing large numbers of barcode voucher specimens, (iii) substantial resources need be mustered to support the taxonomic side of the partnership with barcoding, and (iv) hand-held field-friendly barcorder must emerge as a mutualism with the taxasphere and the barcoding initiative, in a manner such that its use generates a resource base for the taxonomic process as well as a tool for the user.


Molecular Ecology Resources | 2009

Integration of DNA barcoding into an ongoing inventory of complex tropical biodiversity

Daniel H. Janzen; Winnie Hallwachs; Patrick Blandin; John M. Burns; Jean Marie Cadiou; Isidro A. Chacón; Tanya Dapkey; Andrew R. Deans; Marc E. Epstein; Bernardo Espinoza; John G. Franclemont; William A. Haber; Mehrdad Hajibabaei; Jason P. W. Hall; Paul D. N. Hebert; Ian D. Gauld; Donald J. Harvey; Axel Hausmann; Ian J. Kitching; Don Lafontaine; Jean Fran Çois Landry; Claude Lemaire; Jacqueline Y. Miller; James S. Miller; Lee D. Miller; Scott E. Miller; Jose Montero; Eugene Munroe; Suzanne Rab Green; Sujeevan Ratnasingham

Inventory of the caterpillars, their food plants and parasitoids began in 1978 for todays Area de Conservacion Guanacaste (ACG), in northwestern Costa Rica. This complex mosaic of 120 000 ha of conserved and regenerating dry, cloud and rain forest over 0–2000 m elevation contains at least 10 000 species of non‐leaf‐mining caterpillars used by more than 5000 species of parasitoids. Several hundred thousand specimens of ACG‐reared adult Lepidoptera and parasitoids have been intensively and extensively studied morphologically by many taxonomists, including most of the co‐authors. DNA barcoding — the use of a standardized short mitochondrial DNA sequence to identify specimens and flush out undisclosed species — was added to the taxonomic identification process in 2003. Barcoding has been found to be extremely accurate during the identification of about 100 000 specimens of about 3500 morphologically defined species of adult moths, butterflies, tachinid flies, and parasitoid wasps. Less than 1% of the species have such similar barcodes that a molecularly based taxonomic identification is impossible. No specimen with a full barcode was misidentified when its barcode was compared with the barcode library. Also as expected from early trials, barcoding a series from all morphologically defined species, and correlating the morphological, ecological and barcode traits, has revealed many hundreds of overlooked presumptive species. Many but not all of these cryptic species can now be distinguished by subtle morphological and/or ecological traits previously ascribed to ‘variation’ or thought to be insignificant for species‐level recognition. Adding DNA barcoding to the inventory has substantially improved the quality and depth of the inventory, and greatly multiplied the number of situations requiring further taxonomic work for resolution.


Molecular Ecology Resources | 2009

Are plant species inherently harder to discriminate than animal species using DNA barcoding markers

Aron J. Fazekas; Prasad R. Kesanakurti; Kevin S. Burgess; Diana M. Percy; Sean W. Graham; Spencer C. H. Barrett; Steven G. Newmaster; Mehrdad Hajibabaei; Brian C. Husband

The ability to discriminate between species using barcoding loci has proved more difficult in plants than animals, raising the possibility that plant species boundaries are less well defined. Here, we review a selection of published barcoding data sets to compare species discrimination in plants vs. animals. Although the use of different genetic markers, analytical methods and depths of taxon sampling may complicate comparisons, our results using common metrics demonstrate that the number of species supported as monophyletic using barcoding markers is higher in animals (> 90%) than plants (~70%), even after controlling for the amount of parsimony‐informative information per species. This suggests that more than a simple lack of variability limits species discrimination in plants. Both animal and plant species pairs have variable size gaps between intra‐ and interspecific genetic distances, but animal species tend to have larger gaps than plants, even in relatively densely sampled genera. An analysis of 12 plant genera suggests that hybridization contributes significantly to variation in genetic discontinuity in plants. Barcoding success may be improved in some plant groups by careful choice of markers and appropriate sampling; however, overall fine‐scale species discrimination in plants relative to animals may be inherently more difficult because of greater levels of gene‐tree paraphyly.

Collaboration


Dive into the Mehrdad Hajibabaei's collaboration.

Top Co-Authors

Avatar

Winnie Hallwachs

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Daniel H. Janzen

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

John M. Burns

National Museum of Natural History

View shared research outputs
Top Co-Authors

Avatar

Donald J. Baird

University of New Brunswick

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge