Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Joel Lehman is active.

Publication


Featured researches published by Joel Lehman.


electronic commerce | 2011

Abandoning objectives: Evolution through the search for novelty alone

Joel Lehman; Kenneth O. Stanley

In evolutionary computation, the fitness function normally measures progress toward an objective in the search space, effectively acting as an objective function. Through deception, such objective functions may actually prevent the objective from being reached. While methods exist to mitigate deception, they leave the underlying pathology untreated: Objective functions themselves may actively misdirect search toward dead ends. This paper proposes an approach to circumventing deception that also yields a new perspective on open-ended evolution. Instead of either explicitly seeking an objective or modeling natural evolution to capture open-endedness, the idea is to simply search for behavioral novelty. Even in an objective-based problem, such novelty search ignores the objective. Because many points in the search space collapse to a single behavior, the search for novelty is often feasible. Furthermore, because there are only so many simple behaviors, the search for novelty leads to increasing complexity. By decoupling open-ended search from artificial life worlds, the search for novelty is applicable to real world problems. Counterintuitively, in the maze navigation and biped walking tasks in this paper, novelty search significantly outperforms objective-based search, suggesting the strange conclusion that some problems are best solved by methods that ignore the objective. The main lesson is the inherent limitation of the objective-based paradigm and the unexploited opportunity to guide search through other means.


genetic and evolutionary computation conference | 2011

Evolving a diversity of virtual creatures through novelty search and local competition

Joel Lehman; Kenneth O. Stanley

An ambitious challenge in artificial life is to craft an evolutionary process that discovers a wide diversity of well-adapted virtual creatures within a single run. Unlike in nature, evolving creatures in virtual worlds tend to converge to a single morphology because selection therein greedily rewards the morphology that is easiest to exploit. However, novelty search, a technique that explicitly rewards diverging, can potentially mitigate such convergence. Thus in this paper an existing creature evolution platform is extended with multi-objective search that balances drives for both novelty and performance. However, there are different ways to combine performance-driven search and novelty search. The suggested approach is to provide evolution with both a novelty objective that encourages diverse morphologies and a local competition objective that rewards individuals outperforming those most similar in morphology. The results in an experiment evolving locomoting virtual creatures show that novelty search with local competition discovers more functional morphological diversity within a single run than models with global competition, which are more predisposed to converge. The conclusions are that novelty search with local competition may complement recent advances in evolving virtual creatures and may in general be a principled approach to combining novelty search with pressure to achieve.


genetic and evolutionary computation conference | 2010

Revising the evolutionary computation abstraction: minimal criteria novelty search

Joel Lehman; Kenneth O. Stanley

Though based on abstractions of nature, current evolutionary algorithms and artificial life models lack the drive to complexity characteristic of natural evolution. Thus this paper argues that the prevalent fitness-pressure-based abstraction does not capture how natural evolution discovers complexity. Alternatively, this paper proposes that natural evolution can be abstracted as a process that discovers many ways to express the same functionality. That is, all successful organisms must meet the same minimal criteria of survival and reproduction. This abstraction leads to the key idea in this paper: Searching for novel ways of meeting the same minimal criteria, which is an accelerated model of this new abstraction, may be an effective search algorithm. Thus the existing novelty search method, which rewards any new behavior, is extended to enforce minimal criteria. Such minimal criteria novelty search prunes the space of viable behaviors and may often be more efficient than the search for novelty alone. In fact, when compared to the raw search for novelty and traditional fitness-based search in the two maze navigation experiments in this paper, minimal criteria novelty search evolves solutions more consistently. It is possible that refining the evolutionary computation abstraction in this way may lead to solving more ambitious problems and evolving more complex artificial organisms.


IEEE Transactions on Computational Intelligence and Ai in Games | 2014

A Neuroevolution Approach to General Atari Game Playing

Matthew J. Hausknecht; Joel Lehman; Risto Miikkulainen; Peter Stone

This paper addresses the challenge of learning to play many different video games with little domain-specific knowledge. Specifically, it introduces a neuroevolution approach to general Atari 2600 game playing. Four neuroevolution algorithms were paired with three different state representations and evaluated on a set of 61 Atari games. The neuroevolution agents represent different points along the spectrum of algorithmic sophistication - including weight evolution on topologically fixed neural networks (conventional neuroevolution), covariance matrix adaptation evolution strategy (CMA-ES), neuroevolution of augmenting topologies (NEAT), and indirect network encoding (HyperNEAT). State representations include an object representation of the game screen, the raw pixels of the game screen, and seeded noise (a comparative baseline). Results indicate that direct-encoding methods work best on compact state representations while indirect-encoding methods (i.e., HyperNEAT) allow scaling to higher dimensional representations (i.e., the raw game screen). Previous approaches based on temporal-difference (TD) learning had trouble dealing with the large state spaces and sparse reward gradients often found in Atari games. Neuroevolution ameliorates these problems and evolved policies achieve state-of-the-art results, even surpassing human high scores on three games. These results suggest that neuroevolution is a promising approach to general video game playing (GVGP).


genetic and evolutionary computation conference | 2010

Efficiently evolving programs through the search for novelty

Joel Lehman; Kenneth O. Stanley

A significant challenge in genetic programming is premature convergence to local optima, which often prevents evolution from solving problems. This paper introduces to genetic programming a method that originated in neuroevolution (i.e. the evolution of artificial neural networks) that circumvents the problem of deceptive local optima. The main idea is to search only for behavioral novelty instead of for higher fitness values. Although such novelty search abandons following the gradient of the fitness function, if such gradients are deceptive they may actually occlude paths through the search space towards the objective. Because there are only so many ways to behave, the search for behavioral novelty is often computationally feasible and differs significantly from random search. Counterintuitively, in both a deceptive maze navigation task and the artificial ant benchmark task, genetic programming with novelty search, which ignores the objective, outperforms traditional genetic programming that directly searches for optimal behavior. Additionally, novelty search evolves smaller program trees in every variation of the test domains. Novelty search thus appears less susceptible to bloat, another significant problem in genetic programming. The conclusion is that novelty search is a viable new tool for efficiently solving some deceptive problems in genetic programming.


genetic and evolutionary computation conference | 2013

Effective diversity maintenance in deceptive domains

Joel Lehman; Kenneth O. Stanley; Risto Miikkulainen

Diversity maintenance techniques in evolutionary computation are designed to mitigate the problem of deceptive local optima by encouraging exploration. However, as problems become more difficult, the heuristic of fitness may become increasingly uninformative. Thus, simply encouraging genotypic diversity may fail to much increase the likelihood of evolving a solution. In such cases, diversity needs to be directed towards potentially useful structures. A representative example of such a search process is novelty search, which builds diversity by rewarding behavioral novelty. In this paper the effectiveness of fitness, novelty, and diversity maintenance objectives are compared in two evolutionary robotics domains. In a biped locomotion domain, genotypic diversity maintenance helps evolve biped control policies that travel farther before falling. However, the best method is to optimize a fitness objective and a behavioral novelty objective together. In the more deceptive maze navigation domain, diversity maintenance is ineffective while a novelty objective still increases performance. The conclusion is that while genotypic diversity maintenance works in well-posed domains, a method more directed by phenotypic information, like novelty search, is necessary for highly deceptive ones.


PLOS ONE | 2013

Evolvability Is Inevitable: Increasing Evolvability without the Pressure to Adapt

Joel Lehman; Kenneth O. Stanley

Why evolvability appears to have increased over evolutionary time is an important unresolved biological question. Unlike most candidate explanations, this paper proposes that increasing evolvability can result without any pressure to adapt. The insight is that if evolvability is heritable, then an unbiased drifting process across genotypes can still create a distribution of phenotypes biased towards evolvability, because evolvable organisms diffuse more quickly through the space of possible phenotypes. Furthermore, because phenotypic divergence often correlates with founding niches, niche founders may on average be more evolvable, which through population growth provides a genotypic bias towards evolvability. Interestingly, the combination of these two mechanisms can lead to increasing evolvability without any pressure to out-compete other organisms, as demonstrated through experiments with a series of simulated models. Thus rather than from pressure to adapt, evolvability may inevitably result from any drift through genotypic space combined with evolutions passive tendency to accumulate niches.


congress on evolutionary computation | 2011

Improving evolvability through novelty search and self-adaptation

Joel Lehman; Kenneth O. Stanley

A challenge for current evolutionary algorithms is to yield highly evolvable representations like those in nature. Such evolvability in natural evolution is encouraged through selection: Lineages better at molding to new niches are less susceptible to extinction. Similar selection pressure is not generally present in evolutionary algorithms; however, the first hypothesis in this paper is that novelty search, a recent evolutionary technique, also selects for evolvability because it rewards lineages able to continually radiate new behaviors. Results in experiments in a maze-navigation domain in this paper support that novelty search finds more evolvable representations than regular fitness-based search. However, though novelty search outperforms fitness-based search in a second biped locomotion experiment, it proves no more evolvable than fitness-based search because delicately balanced behaviors are more fragile in that domain. The second hypothesis is that such fragility can be mitigated through self-adaption, whereby genomes influence their own reproduction. Further experiments in fragile domains with novelty search and self-adaption indeed demonstrate increased evolvability, while, interestingly, adding self-adaptation to fitness-based search decreases evolvability. Thus, selecting for novelty may often facilitate evolvability when representations are not overly fragile; furthermore, achieving the potential of self-adaptation may often critically depend upon the reward scheme driving evolution.


Archive | 2011

Novelty Search and the Problem with Objectives

Joel Lehman; Kenneth O. Stanley

By synthesizing a growing body ofwork in search processes that are not driven by explicit objectives, this paper advances the hypothesis that there is a fundamental problem with the dominant paradigm of objective-based search in evolutionary computation and genetic programming: Most ambitious objectives do not illuminate a path to themselves. That is, the gradient of improvement induced by ambitious objectives tends to lead not to the objective itself but instead to deadend local optima. Indirectly supporting this hypothesis, great discoveries often are not the result of objective-driven search. For example, the major inspiration for both evolutionary computation and genetic programming, natural evolution, innovates through an open-ended process that lacks a final objective. Similarly, large-scale cultural evolutionary processes, such as the evolution of technology, mathematics, and art, lack a unified fixed goal. In addition, direct evidence for this hypothesis is presented from a recently-introduced search algorithm called novelty search. Though ignorant of the ultimate objective of search, in many instances novelty search has counter-intuitively outperformed searching directly for the objective, including a wide variety of randomly-generated problems introduced in an experiment in this chapter. Thus a new understanding is beginning to emerge that suggests that searching for a fixed objective, which is the reigning paradigm in evolutionary computation and even machine learning as a whole, may ultimately limit what can be achieved. Yet the liberating implication of this hypothesis argued in this paper is that by embracing search processes that are not driven by explicit objectives, the breadth and depth of what is reachable through evolutionary methods such as genetic programming may be greatly expanded.


genetic and evolutionary computation conference | 2010

Evolving the placement and density of neurons in the hyperneat substrate

Sebastian Risi; Joel Lehman; Kenneth O. Stanley

The Hypercube-based NeuroEvolution of Augmenting Topologies (HyperNEAT) approach demonstrated that the pattern of weights across the connectivity of an artificial neural network (ANN) can be generated as a function of its geometry, thereby allowing large ANNs to be evolved for high-dimensional problems. Yet it left to the user the question of where hidden nodes should be placed in a geometry that is potentially infinitely dense. To relieve the user from this decision, this paper introduces an extension called evolvable-substrate HyperNEAT (ES-HyperNEAT) that determines the placement and density of the hidden nodes based on a quadtree-like decomposition of the hypercube of weights and a novel insight about the relationship between connectivity and node placement. The idea is that the representation in HyperNEAT that encodes the pattern of connectivity across the ANN contains implicit information on where the nodes should be placed and can therefore be exploited to avoid the need to evolve explicit placement. In this paper, as a proof of concept, ES-HyperNEAT discovers working placements of hidden nodes for a simple navigation domain on its own, thereby eliminating the need to configure the HyperNEAT substrate by hand and suggesting the potential power of the new approach.

Collaboration


Dive into the Joel Lehman's collaboration.

Top Co-Authors

Avatar

Kenneth O. Stanley

University of Central Florida

View shared research outputs
Top Co-Authors

Avatar

Risto Miikkulainen

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David B. D'Ambrosio

University of Central Florida

View shared research outputs
Top Co-Authors

Avatar

Sebastian Risi

IT University of Copenhagen

View shared research outputs
Top Co-Authors

Avatar

Sebastian Risi

IT University of Copenhagen

View shared research outputs
Top Co-Authors

Avatar

Aloysius K. Mok

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar

Jacob Schrum

Southwestern University

View shared research outputs
Top Co-Authors

Avatar

Luis Sentis

University of Texas at Austin

View shared research outputs
Researchain Logo
Decentralizing Knowledge