Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kenneth O. Stanley is active.

Publication


Featured researches published by Kenneth O. Stanley.


electronic commerce | 2002

Evolving neural networks through augmenting topologies

Kenneth O. Stanley; Risto Miikkulainen

An important question in neuroevolution is how to gain an advantage from evolving neural network topologies along with weights. We present a method, NeuroEvolution of Augmenting Topologies (NEAT), which outperforms the best fixed-topology method on a challenging benchmark reinforcement learning task. We claim that the increased efficiency is due to (1) employing a principled method of crossover of different topologies, (2) protecting structural innovation using speciation, and (3) incrementally growing from minimal structure. We test this claim through a series of ablation studies that demonstrate that each component is necessary to the system as a whole and to each other. What results is signicantly faster learning. NEAT is also an important contribution to GAs because it shows how it is possible for evolution to both optimize and complexify solutions simultaneously, offering the possibility of evolving increasingly complex solutions over generations, and strengthening the analogy with biological evolution.


electronic commerce | 2011

Abandoning objectives: Evolution through the search for novelty alone

Joel Lehman; Kenneth O. Stanley

In evolutionary computation, the fitness function normally measures progress toward an objective in the search space, effectively acting as an objective function. Through deception, such objective functions may actually prevent the objective from being reached. While methods exist to mitigate deception, they leave the underlying pathology untreated: Objective functions themselves may actively misdirect search toward dead ends. This paper proposes an approach to circumventing deception that also yields a new perspective on open-ended evolution. Instead of either explicitly seeking an objective or modeling natural evolution to capture open-endedness, the idea is to simply search for behavioral novelty. Even in an objective-based problem, such novelty search ignores the objective. Because many points in the search space collapse to a single behavior, the search for novelty is often feasible. Furthermore, because there are only so many simple behaviors, the search for novelty leads to increasing complexity. By decoupling open-ended search from artificial life worlds, the search for novelty is applicable to real world problems. Counterintuitively, in the maze navigation and biped walking tasks in this paper, novelty search significantly outperforms objective-based search, suggesting the strange conclusion that some problems are best solved by methods that ignore the objective. The main lesson is the inherent limitation of the objective-based paradigm and the unexploited opportunity to guide search through other means.


Journal of Artificial Intelligence Research | 2004

Competitive coevolution through evolutionary complexification

Kenneth O. Stanley; Risto Miikkulainen

Two major goals in machine learning are the discovery and improvement of solutions to complex problems. In this paper, we argue that complexification, i.e. the incremental elaboration of solutions through adding new structure, achieves both these goals. We demonstrate the power of complexification through the NeuroEvolution of Augmenting Topologies (NEAT) method, which evolves increasingly complex neural network architectures. NEAT is applied to an open-ended coevolutionary robot duel domain where robot controllers compete head to head. Because the robot duel domain supports a wide range of strategies, and because coevolution benefits from an escalating arms race, it serves as a suitable testbed for studying complexification. When compared to the evolution of networks with fixed structure, complexifying evolution discovers significantly more sophisticated strategies. The results suggest that in order to discover and improve complex solutions, evolution, and search in general, should be allowed to complexify as well as optimize.


Artificial Life | 2003

A Taxonomy for artificial embryogeny

Kenneth O. Stanley; Risto Miikkulainen

A major challenge for evolutionary computation is to evolve phenotypes such as neural networks, sensory systems, or motor controllers at the same level of complexity as found in biological organisms. In order to meet this challenge, many researchers are proposing indirect encodings, that is, evolutionary mechanisms where the same genes are used multiple times in the process of building a phenotype. Such gene reuse allows compact representations of very complex phenotypes. Development is a natural choice for implementing indirect encodings, if only because nature itself uses this very process. Motivated by the development of embryos in nature, we define artificial embryogeny (AE) as the subdiscipline of evolutionary computation (EC) in which phenotypes undergo a developmental phase. An increasing number of AE systems are currently being developed, and a need has arisen for a principled approach to comparing and contrasting, and ultimately building, such systems. Thus, in this paper, we develop a principled taxonomy for AE. This taxonomy provides a unified context for long-term research in AE, so that implementation decisions can be compared and contrasted along known dimensions in the design space of embryogenic systems. It also allows predicting how the settings of various AE parameters affect the capacity to efficiently evolve complex phenotypes.


Artificial Life | 2009

A hypercube-based encoding for evolving large-scale neural networks

Kenneth O. Stanley; David B. D'Ambrosio; Jason Gauci

Research in neuroevolutionthat is, evolving artificial neural networks (ANNs) through evolutionary algorithmsis inspired by the evolution of biological brains, which can contain trillions of connections. Yet while neuroevolution has produced successful results, the scale of natural brains remains far beyond reach. This article presents a method called hypercube-based NeuroEvolution of Augmenting Topologies (HyperNEAT) that aims to narrow this gap. HyperNEAT employs an indirect encoding called connective compositional pattern-producing networks (CPPNs) that can produce connectivity patterns with symmetries and repeating motifs by interpreting spatial patterns generated within a hypercube as connectivity patterns in a lower-dimensional space. This approach can exploit the geometry of the task by mapping its regularities onto the topology of the network, thereby shifting problem difficulty away from dimensionality to the underlying problem structure. Furthermore, connective CPPNs can represent the same connectivity pattern at any resolution, allowing ANNs to scale to new numbers of inputs and outputs without further evolution. HyperNEAT is demonstrated through visual discrimination and food-gathering tasks, including successful visual discrimination networks containing over eight million connections. The main conclusion is that the ability to explore the space of regular connectivity patterns opens up a new class of complex high-dimensional tasks to neuroevolution.


Genetic Programming and Evolvable Machines | 2007

Compositional pattern producing networks: A novel abstraction of development

Kenneth O. Stanley

Natural DNA can encode complexity on an enormous scale. Researchers are attempting to achieve the same representational efficiency in computers by implementing developmental encodings, i.e. encodings that map the genotype to the phenotype through a process of growth from a small starting point to a mature form. A major challenge in in this effort is to find the right level of abstraction of biological development to capture its essential properties without introducing unnecessary inefficiencies. In this paper, a novel abstraction of natural development, called Compositional Pattern Producing Networks (CPPNs), is proposed. Unlike currently accepted abstractions such as iterative rewrite systems and cellular growth simulations, CPPNs map to the phenotype without local interaction, that is, each individual component of the phenotype is determined independently of every other component. Results produced with CPPNs through interactive evolution of two-dimensional images show that such an encoding can nevertheless produce structural motifs often attributed to more conventional developmental abstractions, suggesting that local interaction may not be essential to the desirable properties of natural encoding in the way that is usually assumed.


IEEE Transactions on Computational Intelligence and Ai in Games | 2011

Search-Based Procedural Content Generation: A Taxonomy and Survey

Julian Togelius; Georgios N. Yannakakis; Kenneth O. Stanley; Cameron Browne

The focus of this survey is on research in applying evolutionary and other metaheuristic search algorithms to automatically generating content for games, both digital and nondigital (such as board games). The term search-based procedural content generation is proposed as the name for this emerging field, which at present is growing quickly. A taxonomy for procedural content generation is devised, centering on what kind of content is generated, how the content is represented and how the quality/fitness of the content is evaluated; search-based procedural content generation in particular is situated within this taxonomy. This article also contains a survey of all published papers known to the authors in which game content is generated through search or optimisation, and ends with an overview of important open research problems.


computational intelligence and games | 2009

Evolving content in the Galactic Arms Race video game

Erin J. Hastings; Ratan K. Guha; Kenneth O. Stanley

Video game content includes the levels, models, items, weapons, and other objects encountered and wielded by players during the game. In most modern video games, the set of content shipped with the game is static and unchanging, or at best, randomized within a narrow set of parameters. However, ideally, if game content could be constantly renewed, players would remain engaged longer in the evolving stream of novel content. To realize this ambition, this paper introduces the content-generating NeuroEvolution of Augmenting Topologies (cgNEAT) algorithm, which automatically evolves game content based on player preferences, as the game is played. To demonstrate this approach, the Galactic Arms Race (GAR) video game is also introduced. In GAR, players pilot space ships and fight enemies to acquire unique particle system weapons that are evolved by the game. As shown in this paper, players can discover a wide variety of content that is not only novel, but also based on and extended from previous content that they preferred in the past. The implication is that it is now possible to create games that generate their own content to satisfy players, potentially significantly reducing the cost of content creation and increasing the replay value of games.


genetic and evolutionary computation conference | 2007

Generating large-scale neural networks through discovering geometric regularities

Jason Gauci; Kenneth O. Stanley

Connectivity patterns in biological brains exhibit many repeating motifs. This repetition mirrors inherent geometric regularities in the physical world. For example, stimuli that excite adjacent locations on the retina map to neurons that are similarly adjacent in the visual cortex. That way, neural connectivity can exploit geometric locality in the outside world by employing local connections in the brain. If such regularities could be discovered by methods that evolve artificial neural networks (ANNs), then they could be similarly exploited to solve problems that would otherwise require optimizing too many dimensions to solve. This paper introduces such a method, called Hypercube-based Neuroevolution of Augmenting Topologies (HyperNEAT), which evolves a novel generative encoding called connective Compositional Pattern Producing Networks (connective CPPNs) to discover geometric regularities in the task domain. Connective CPPNs encode connectivity patterns as concepts that are independent of the number of inputs or outputs, allowing functional large-scale neural networks to be evolved. In this paper, this approach is tested in a simple visual task for which it effectively discovers the correct underlying regularity, allowing the solution to both generalize and scale without loss of function to an ANN of over eight million connections.


genetic and evolutionary computation conference | 2011

Evolving a diversity of virtual creatures through novelty search and local competition

Joel Lehman; Kenneth O. Stanley

An ambitious challenge in artificial life is to craft an evolutionary process that discovers a wide diversity of well-adapted virtual creatures within a single run. Unlike in nature, evolving creatures in virtual worlds tend to converge to a single morphology because selection therein greedily rewards the morphology that is easiest to exploit. However, novelty search, a technique that explicitly rewards diverging, can potentially mitigate such convergence. Thus in this paper an existing creature evolution platform is extended with multi-objective search that balances drives for both novelty and performance. However, there are different ways to combine performance-driven search and novelty search. The suggested approach is to provide evolution with both a novelty objective that encourages diverse morphologies and a local competition objective that rewards individuals outperforming those most similar in morphology. The results in an experiment evolving locomoting virtual creatures show that novelty search with local competition discovers more functional morphological diversity within a single run than models with global competition, which are more predisposed to converge. The conclusions are that novelty search with local competition may complement recent advances in evolving virtual creatures and may in general be a principled approach to combining novelty search with pressure to achieve.

Collaboration


Dive into the Kenneth O. Stanley's collaboration.

Top Co-Authors

Avatar

Joel Lehman

University of Copenhagen

View shared research outputs
Top Co-Authors

Avatar

Risto Miikkulainen

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar

Sebastian Risi

IT University of Copenhagen

View shared research outputs
Top Co-Authors

Avatar

Paul A. Szerlip

University of Central Florida

View shared research outputs
Top Co-Authors

Avatar

Amy K. Hoover

University of Central Florida

View shared research outputs
Top Co-Authors

Avatar

David B. D'Ambrosio

University of Central Florida

View shared research outputs
Top Co-Authors

Avatar

Justin K. Pugh

University of Central Florida

View shared research outputs
Top Co-Authors

Avatar

Jeff Clune

Michigan State University

View shared research outputs
Top Co-Authors

Avatar

Erin J. Hastings

University of Central Florida

View shared research outputs
Top Co-Authors

Avatar

Jason Gauci

University of Central Florida

View shared research outputs
Researchain Logo
Decentralizing Knowledge