Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Joel N. Meyer is active.

Publication


Featured researches published by Joel N. Meyer.


Toxicological Sciences | 2008

Caenorhabditis elegans: An Emerging Model in Biomedical and Environmental Toxicology

Maxwell C. K. Leung; Phillip L. Williams; Alexandre Benedetto; Catherine Au; Kirsten J. Helmcke; Michael Aschner; Joel N. Meyer

The nematode Caenorhabditis elegans has emerged as an important animal model in various fields including neurobiology, developmental biology, and genetics. Characteristics of this animal model that have contributed to its success include its genetic manipulability, invariant and fully described developmental program, well-characterized genome, ease of maintenance, short and prolific life cycle, and small body size. These same features have led to an increasing use of C. elegans in toxicology, both for mechanistic studies and high-throughput screening approaches. We describe some of the research that has been carried out in the areas of neurotoxicology, genetic toxicology, and environmental toxicology, as well as high-throughput experiments with C. elegans including genome-wide screening for molecular targets of toxicity and rapid toxicity assessment for new chemicals. We argue for an increased role for C. elegans in complementing other model systems in toxicological research.


Environmental Science & Technology | 2012

Mechanism of Silver Nanoparticle Toxicity Is Dependent on Dissolved Silver and Surface Coating in Caenorhabditis elegans

Xinyu Yang; Andreas P. Gondikas; Stella M. Marinakos; Mélanie Auffan; Jie Liu; Heileen Hsu-Kim; Joel N. Meyer

The rapidly increasing use of silver nanoparticles (Ag NPs) in consumer products and medical applications has raised ecological and human health concerns. A key question for addressing these concerns is whether Ag NP toxicity is mechanistically unique to nanoparticulate silver, or if it is a result of the release of silver ions. Furthermore, since Ag NPs are produced in a large variety of monomer sizes and coatings, and since their physicochemical behavior depends on the media composition, it is important to understand how these variables modulate toxicity. We found that a lower ionic strength medium resulted in greater toxicity (measured as growth inhibition) of all tested Ag NPs to Caenorhabditis elegans and that both dissolved silver and coating influenced Ag NP toxicity. We found a linear correlation between Ag NP toxicity and dissolved silver, but no correlation between size and toxicity. We used three independent and complementary approaches to investigate the mechanisms of toxicity of differentially coated and sized Ag NPs: pharmacological (rescue with trolox and N-acetylcysteine), genetic (analysis of metal-sensitive and oxidative stress-sensitive mutants), and physicochemical (including analysis of dissolution of Ag NPs). Oxidative dissolution was limited in our experimental conditions (maximally 15% in 24 h) yet was key to the toxicity of most Ag NPs, highlighting a critical role for dissolved silver complexed with thiols in the toxicity of all tested Ag NPs. Some Ag NPs (typically less soluble due to size or coating) also acted via oxidative stress, an effect specific to nanoparticulate silver. However, in no case studied here was the toxicity of a Ag NP greater than would be predicted by complete dissolution of the same mass of silver as silver ions.


Methods of Molecular Biology | 2014

Quantitative PCR-Based Measurement of Nuclear and Mitochondrial DNA Damage and Repair in Mammalian Cells

Amy M. Furda; Janine H. Santos; Joel N. Meyer; Bennett Van Houten

In this chapter, we describe a gene-specific quantitative PCR (QPCR)-based assay for the measurement of DNA damage, using amplification of long DNA targets. This assay has been used extensively to measure the integrity of both nuclear and mitochondrial genomes exposed to different genotoxins and has proven to be particularly valuable in identifying reactive oxygen species-mediated mitochondrial DNA damage. QPCR can be used to quantify both the formation of DNA damage as well as the kinetics of damage removal. One of the main strengths of the assay is that it permits monitoring the integrity of mtDNA directly from total cellular DNA without the need for isolating mitochondria or a separate step of mitochondrial DNA purification. Here we discuss advantages and limitations of using QPCR to assay DNA damage in mammalian cells. In addition, we give a detailed protocol of the QPCR assay that helps facilitate its successful deployment in any molecular biology laboratory.


Aquatic Toxicology | 2010

Intracellular uptake and associated toxicity of silver nanoparticles in Caenorhabditis elegans

Joel N. Meyer; Christopher A. Lord; Xinyu Y. Yang; Elena A. Turner; Appala Raju Badireddy; Stella M. Marinakos; Ashutosh Chilkoti; Mark R. Wiesner; Mélanie Auffan

Silver nanoparticles (AgNPs) are frequently used as antimicrobials. While the mechanism(s) by which AgNPs are toxic are unclear, their increasing use raises the concern that release into the environment could lead to environmental toxicity. We characterized the physicochemical behavior, uptake, toxicity (growth inhibition), and mechanism of toxicity of three AgNPs with different sizes and polyvinylpyrrolidone (PVP) or citrate coatings to the nematode Caenorhabditis elegans. We used wild-type (N2) C. elegans and strains expected to be sensitive to oxidative stress (nth-1, sod-2 and mev-1), genotoxins (xpa-1 and nth-1), and metals (mtl-2). Using traditional and novel analytical methods, we observed significant aggregation and extra-organismal dissolution of silver, organismal uptake and, in one case, transgenerational transfer of AgNPs. We also observed growth inhibition by all tested AgNPs at concentrations in the low mg/L levels. A metallothionein-deficient (mtl-2) strain was the only mutant tested that exhibited consistently greater AgNP sensitivity than wild-type. Although all tested AgNPs were internalized (passed cell membranes) in C. elegans, at least part of the toxicity observed was mediated by ionic silver. Finally, we describe a modified growth assay that permits differentiation between direct growth-inhibitory effects and indirect inhibition mediated by toxicity to the food source.


Toxicological Sciences | 2013

Mitochondria as a Target of Environmental Toxicants

Joel N. Meyer; Maxwell C. K. Leung; John P. Rooney; Ataman Sendoel; Michael O. Hengartner; Glen E. Kisby; Amanda S. Bess

Enormous strides have recently been made in our understanding of the biology and pathobiology of mitochondria. Many diseases have been identified as caused by mitochondrial dysfunction, and many pharmaceuticals have been identified as previously unrecognized mitochondrial toxicants. A much smaller but growing literature indicates that mitochondria are also targeted by environmental pollutants. We briefly review the importance of mitochondrial function and maintenance for health based on the genetics of mitochondrial diseases and the toxicities resulting from pharmaceutical exposure. We then discuss how the principles of mitochondrial vulnerability illustrated by those fields might apply to environmental contaminants, with particular attention to factors that may modulate vulnerability including genetic differences, epigenetic interactions, tissue characteristics, and developmental stage. Finally, we review the literature related to environmental mitochondrial toxicants, with a particular focus on those toxicants that target mitochondrial DNA. We conclude that the fields of environmental toxicology and environmental health should focus more strongly on mitochondria.


Environmental Science & Technology | 2013

Sulfidation of Silver Nanoparticles: Natural Antidote to Their Toxicity

Clément Levard; Ernest M. Hotze; Benjamin P. Colman; Amy L. Dale; Lisa Truong; Xinyao Yang; Audrey J. Bone; Gordon E. Brown; Robert L. Tanguay; Richard T. Di Giulio; Emily S. Bernhardt; Joel N. Meyer; Mark R. Wiesner; Gregory V. Lowry

Nanomaterials are highly dynamic in biological and environmental media. A critical need for advancing environmental health and safety research for nanomaterials is to identify physical and chemical transformations that affect the nanomaterial properties and their toxicity. Silver nanoparticles, one of the most toxic and well-studied nanomaterials, readily react with sulfide to form Ag(0)/Ag2S core-shell particles. Here, we show that sulfidation decreased silver nanoparticle toxicity to four diverse types of aquatic and terrestrial eukaryotic organisms (Danio rerio (zebrafish), Fundulus heteroclitus (killifish), Caenorhabditis elegans (nematode worm), and the aquatic plant Lemna minuta (least duckweed)). Toxicity reduction, which was dramatic in killifish and duckweed even for low extents of sulfidation (about 2 mol % S), is primarily associated with a decrease in Ag(+) concentration after sulfidation due to the lower solubility of Ag2S relative to elemental Ag (Ag(0)). These results suggest that even partial sulfidation of AgNP will decrease the toxicity of AgNPs relative to their pristine counterparts. We also show that, for a given organism, the presence of chloride in the exposure media strongly affects the toxicity results by affecting Ag speciation. These results highlight the need to consider environmental transformations of NPs in assessing their toxicity to accurately portray their potential environmental risks.


Aging Cell | 2004

Mitochondrial hTERT exacerbates free-radical-mediated mtDNA damage

Janine H. Santos; Joel N. Meyer; Milan Skorvaga; Lois A. Annab; Bennett Van Houten

Telomerase is often re‐activated in human cancers and is widely used to immortalize cells in culture. In addition to the maintenance of telomeres, telomerase has been implicated in cell proliferation, genomic instability and apoptosis. Here we show that human telomerase reverse transcriptase (hTERT) is targeted to the mitochondria by an N‐terminal leader sequence, and that mitochondrial extracts contain telomerase activity. In seven different human cell lines, mitochondrial telomerase increases hydrogen‐peroxide‐mediated mitochondrial DNA damage. hTERT expression did not alter the rate of hydrogen peroxide breakdown or endogenous cellular levels. Because the damaging effects of hydrogen peroxide are mediated by divalent metal ions (Fenton chemistry), we examined the levels of bioavailable metals. In all cases, higher levels of chelatable metals were found in hTERT‐expressing cells. These results suggest that mitochondrial telomerase sensitizes cells to oxidative stress, which can lead to apoptotic cell death, and imply a novel function of telomerase in mitochondrial DNA transactions.


Ecological Applications | 2003

HERITABLE ADAPTATION AND FITNESS COSTS IN KILLIFISH (FUNDULUS HETEROCLITUS) INHABITING A POLLUTED ESTUARY

Joel N. Meyer; Richard T. Di Giulio

Adaptation to contaminants in the environment has been studied extensively in microbes, insects, and plants, and increasing evidence suggests that certain vertebrate populations as well are evolving in response to pollution. Here, we show that F1 and F2 laboratory-raised offspring of killifish (Fundulus heteroclitus, also known as mummichog) from a highly contaminated site on the Elizabeth River (Virginia, USA) are more resistant to the toxicity of Elizabeth River sediments than are offspring of reference site killifish. This resistance is more marked in the F1 than in the F2 generation, but it remains significant in the F2 generation, indicating that the resistant phenotype in the feral Elizabeth River killifish is based on both genetic and nongenetic mechanisms. In addition, both the F1 and F2 generation offspring of the Elizabeth River killifish are more susceptible to other stressors, both anthropogenic (photoenhanced toxicity) and natural (hypoxia), suggesting that the changes that have conferred resistance to the toxicity of the Elizabeth River sediments carry a cost of reduced fitness in other contexts. Corresponding Editor: J. E. McDowell.


Methods | 2010

The QPCR assay for analysis of mitochondrial DNA damage, repair, and relative copy number.

Senyene E. Hunter; Dawoon Jung; Richard T. Di Giulio; Joel N. Meyer

The quantitative polymerase chain reaction (QPCR) assay allows measurement of DNA damage in the mitochondrial and nuclear genomes without isolation of mitochondria. It also permits measurement of relative mitochondrial genome copy number. Finally, it can be used for measurement of DNA repair in vivo when employed appropriately. In this manuscript we briefly review the methodology of the QPCR assay, discuss its strengths and limitations, address considerations for measurement of mitochondrial DNA repair, and describe methodological changes implemented in recent years. We present QPCR assay primers and reaction conditions for five species not previously described in a methods article: Caenorhabditis elegans, Fundulus heteroclitus, Danio rerio, Drosophila melanogaster, and adenovirus. Finally, we illustrate the use of the assay by measuring repair of ultraviolet C radiation-induced DNA damage in the nuclear but not mitochondrial genomes of a zebrafish cell culture.


Applied and Environmental Microbiology | 2009

UV disinfection of adenoviruses: molecular indications of DNA damage efficiency.

Anne C. Eischeid; Joel N. Meyer; Karl G. Linden

ABSTRACT Adenovirus is a focus of the water treatment community because of its resistance to standard, monochromatic low-pressure (LP) UV irradiation. Recent research has shown that polychromatic, medium-pressure (MP) UV sources are more effective than LP UV for disinfection of adenovirus when viral inactivation is measured using cell culture infectivity assays; however, UV-induced DNA damage may be repaired during cell culture infectivity assays, and this confounds interpretation of these results. Objectives of this work were to study adenoviral response to both LP and MP UV using (i) standard cell culture infectivity assays and (ii) a PCR assay to directly assess damage to the adenoviral genome without introducing the virus into cell culture. LP and MP UV dose response curves were determined for (i) log inactivation of the virus in cell culture and (ii) UV-induced lesions per kilobase of viral DNA as measured by the PCR assay. Results show that LP and MP UV are equally effective at damaging the genome; MP UV is more effective at inactivating adenovirus in cell culture. This work suggests that the higher disinfection efficacy of MP UV cannot be attributed to a difference in DNA damage induction. These results enhance our understanding of the fundamental mechanisms of UV disinfection of viruses—especially double-stranded DNA viruses that infect humans—and improve the ability of the water treatment community to protect public health.

Collaboration


Dive into the Joel N. Meyer's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge