Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Joel T. Harper is active.

Publication


Featured researches published by Joel T. Harper.


Science | 2008

Kinematic Constraints on Glacier Contributions to 21st-Century Sea-Level Rise

W. T. Pfeffer; Joel T. Harper; Shad O'Neel

On the basis of climate modeling and analogies with past conditions, the potential for multimeter increases in sea level by the end of the 21st century has been proposed. We consider glaciological conditions required for large sea-level rise to occur by 2100 and conclude that increases in excess of 2 meters are physically untenable. We find that a total sea-level rise of about 2 meters by 2100 could occur under physically possible glaciological conditions but only if all variables are quickly accelerated to extremely high limits. More plausible but still accelerated conditions lead to total sea-level rise by 2100 of about 0.8 meter. These roughly constrained scenarios provide a “most likely” starting point for refinements in sea-level forecasts that include ice flow dynamics.


Nature | 2012

Greenland ice-sheet contribution to sea-level rise buffered by meltwater storage in firn

Joel T. Harper; Neil F. Humphrey; W. T. Pfeffer; Joel Brown; Xavier Fettweis

Surface melt on the Greenland ice sheet has shown increasing trends in areal extent and duration since the beginning of the satellite era. Records for melt were broken in 2005, 2007, 2010 and 2012. Much of the increased surface melt is occurring in the percolation zone, a region of the accumulation area that is perennially covered by snow and firn (partly compacted snow). The fate of melt water in the percolation zone is poorly constrained: some may travel away from its point of origin and eventually influence the ice sheet’s flow dynamics and mass balance and the global sea level, whereas some may simply infiltrate into cold snow or firn and refreeze with none of these effects. Here we quantify the existing water storage capacity of the percolation zone of the Greenland ice sheet and show the potential for hundreds of gigatonnes of meltwater storage. We collected in situ observations of firn structure and meltwater retention along a roughly 85-kilometre-long transect of the melting accumulation area. Our data show that repeated infiltration events in which melt water penetrates deeply (more than 10 metres) eventually fill all pore space with water. As future surface melt intensifies under Arctic warming, a fraction of melt water that would otherwise contribute to sea-level rise will fill existing pore space of the percolation zone. We estimate the lower and upper bounds of this storage sink to be 322 ± 44 gigatonnes and  gigatonnes, respectively. Furthermore, we find that decades are required to fill this pore space under a range of plausible future climate conditions. Hence, routing of surface melt water into filling the pore space of the firn column will delay expansion of the area contributing to sea-level rise, although once the pore space is filled it cannot quickly be regenerated.


Cold Regions Science and Technology | 2003

Snow stratigraphy over a uniform depositional surface: spatial variability and measurement tools

Joel T. Harper; John H. Bradford

Abstract Instrumentation and methods for measuring snow properties are compared in an investigation of millimeter- to meter-scale stratigraphy in a snowpack not influenced by topography, vegetation, or a warm and variable ground surface. Field measurements were conducted within a 20×20×2 m plot at Pika Glacier, Alaska. The snow was characterized by more than 600 point measurements of density, stratigraphic mapping in 19 snow-pits, and by pulse-radar imaging along 20 cross-plot profiles. Density was measured manually and was calculated from electric permittivity, which was determined with a hand-held probe and by radar velocity analysis. Stratigraphic mapping in snow-pit walls with manual measurements of density identified comparatively few layers, suggesting a relatively homogeneous snowpack. Both the permittivity probe and the radar imaging, however, identified a larger number of layers based on vertical density contrasts. Image analysis of a back-illuminated column of snow revealed the highest level of stratigraphic complexity, identifying layers mm in thickness that extended up to 10 cm laterally. Despite minor variations in snow properties at the mm scale, major features in the vertical density profiles were laterally continuous over tens of meters. These results provide evidence for spatial homogeneity of densification processes leading to decimeter scale layering in a situation where the snowpack is not influenced by local terrain factors. In addition, these observations demonstrate that the complexity of snow stratigraphy is highly dependent upon choice of scale and measurement tool.


Science | 2013

Basal Drainage System Response to Increasing Surface Melt on the Greenland Ice Sheet

Toby W. Meierbachtol; Joel T. Harper; Neil F. Humphrey

Draining Through Ice Water formed by surface melting of the Greenland Ice Sheet is transferred rapidly to the underlying bedrock, but how the water is then dispersed is less clear. This question is important because how the ice-rock interface is lubricated affects how fast the ice sheet moves. Existing conceptual models are based on observations of mountain glaciers, but Meierbachtol et al. (p. 777; see the Perspective by Lüthi) now show that those ideas may not be applicable to the Greenland Ice Sheet. Measuring water pressures in a transect of 23 boreholes revealed that drainage structures differ between the edge, where large melt channels form, and further inland, where more distributed pathways are found. Basal drainage structures at the edges of the Greenland ice sheet differ from those found farther in the interior. [Also see Perspective by Lüthi] Surface meltwater reaching the bed of the Greenland ice sheet imparts a fundamental control on basal motion. Sliding speed depends on ice/bed coupling, dictated by the configuration and pressure of the hydrologic drainage system. In situ observations in a four-site transect containing 23 boreholes drilled to Greenland’s bed reveal basal water pressures unfavorable to water-draining conduit development extending inland beneath deep ice. This finding is supported by numerical analysis based on realistic ice sheet geometry. Slow meltback of ice walls limits conduit growth, inhibiting their capacity to transport increased discharge. Key aspects of current conceptual models for Greenland basal hydrology, derived primarily from the study of mountain glaciers, appear to be limited to a portion of the ablation zone near the ice sheet margin.


Annals of Glaciology | 2009

Continuous Profiles of Electromagnetic Wave Velocity and Water Content in Glaciers: An Example from Bench Glacier, Alaska, USA

John H. Bradford; Joshua Nichols; T. Dylan Mikesell; Joel T. Harper

Abstract We conducted two-dimensional continuous multi-offset georadar surveys on Bench Glacier, south-central Alaska, USA, to measure the distribution of englacial water. We acquired data with a multichannel 25 MHz radar system using transmitter–receiver offsets ranging from 5 to 150 m. We towed the radar system at 5–10 kmh–1 with a snow machine with transmitter/receiver positions established by geodetic-grade kinematic differentially corrected GPS (nominal 0.5 m trace spacing). For radar velocity analyses, we employed reflection tomography in the pre-stack depth-migrated domain to attain an estimated 2% velocity uncertainty when averaged over three to five wavelengths. We estimated water content from the velocity structure using the complex refractive index method equation and use a three-phase model (ice, water, air) that accounts for compression of air bubbles as a function of depth. Our analysis produced laterally continuous profiles of glacier water content over several kilometers. These profiles show a laterally variable, stratified velocity structure with a low-water-content (~0–0.5%) shallow layer (~20–30 m) underlain by high-water-content (1–2.5%) ice.


Nature | 2010

Vertical extension of the subglacial drainage system into basal crevasses.

Joel T. Harper; John H. Bradford; Neil F. Humphrey; Toby W. Meierbachtol

Water plays a first-order role in basal sliding of glaciers and ice sheets and is often a key constituent of accelerated glacier motion. Subglacial water is known to occupy systems of cavities and conduits at the interface between ice and the underlying bed surface, depending upon the history of water input and the characteristics of the substrate. Full understanding of the extent and configuration of basal water is lacking, however, because direct observation is difficult. This limits our ability to simulate ice dynamics and the subsequent impacts on sea-level rise realistically. Here we show that the subglacial hydrological system can have a large volume of water occupying basal crevasses that extend upward from the bed into the overlying ice. Radar and seismic imaging combined with in situ borehole measurements collected on Bench Glacier, Alaska, reveal numerous water-filled basal crevasses with highly transmissive connections to the bed. Some crevasses extend many tens of metres above the bed and together they hold a volume of water equivalent to at least a decimetre layer covering the bed. Our results demonstrate that the basal hydrologic system can extend high into the overlying ice mass, where basal crevasses increase water-storage capacity and could potentially modulate basal water pressure. Because basal crevasses can form under commonly observed glaciological conditions, our findings have implications for interpreting and modelling subglacial hydrologic processes and related sliding accelerations of glaciers and ice sheets.


Geophysical Research Letters | 2003

High altitude Himalayan climate inferred from glacial ice flux

Joel T. Harper; Neil F. Humphrey

[1] Glaciological processes are modeled to investigate precipitation patterns and the resulting mass flux of snow and ice across Himalayan topography. Our model tracks the accumulation and ablation of snow and ice and the transport of snow and ice across the topography by glacier motion. We investigate high elevation precipitation on the Annapurna Massif by comparing the existing ice cover with model-simulated glaciers produced by a suite of different precipitation scenarios. Our results suggest that precipitation reaches a maximum level well below the elevation of the highest peaks. Further, essentially no snow accumulates on the topography above an elevation of 6200–6300 m. Hence, the upper 1000+ m of the massif is a high elevation desert with little flux of snow and ice. Active glaciers are limited to a band of intermediate elevations where a maximum of about 60% of the landscape is covered by moving ice. INDEX TERMS: 1863 Hydrology: Snow and ice (1827); 3354 Meteorology and Atmospheric Dynamics: Precipitation (1854); 1854 Hydrology: Precipitation (3354); 1625 Global Change: Geomorphology and weathering (1824, 1886). Citation: Harper, J. T., and N. F. Humphrey, High altitude Himalayan climate inferred from glacial ice flux, Geophys. Res. Lett., 30(14), 1764, doi:10.1029/2003GL017329, 2003.


Arctic and alpine research | 1993

Glacier Terminus Fluctuations on Mount Baker, Washington, U.S.A., 1940- 1990, and Climatic Variations

Joel T. Harper

The terminus positions of six glaciers located on Mount Baker, Washington, were mapped by photogrammetric techniques at 2- to 7-yr intervals for the period 1940-1990. Although the timing varied slightly, each of the glaciers experienced a similar fluctuation sequence consisting of three phases: (1) rapid retreat, beginning prior to 1940 and lasting through the late 1940s to early 1950s; (2) approximately 30 yr of advance, ending in the late 1970s to early 1980s; (3) retreat though 1990. Terminus positions changed by up to 750 m during phases, with the advance phase increasing the lengths of glaciers by 13 to 24%. These fluctuations are well explained by variations in a smoothed time-series of accumulation-season precipitation and ablation-season mean temperature. The study glaciers appear to respond to interannual scale changes in climate within 20 yr or less. The glaciers on Mount Baker have a maritime location and a large percentage of area at high elevation, which may make their termini undergo greater fluctuations in response to climatic changes, especially precipitation variations, than most other glaciers in the North Cascades region. 40 refs., 6 figs., 2 tabs.


Geology | 1995

Borehole video analysis of a temperate glacier' englacial and subglacial structure: Implications for glacier flow models

Joel T. Harper; Neil F. Humphrey

Video observations made in 16 boreholes drilled through a deforming valley glacier affirm that temperate glacier ice may be reasonably well represented as homogeneous in glacier flow models, but raise warnings about the complexities of basal boundary conditions and glacier sliding. Discrete englacial structures, including clear-ice layers, voids, and water conduits, compose a total of <3% of the ice mass. Planar features (clear-ice layers) are oriented near vertical and are not aligned with the sense of shear strain, meaning that the layers probably do not influence the homogeneity of the strain. Both direct observations of the ice and analysis of its light reflectance suggest an increase in crystal size and decrease in bubble content with depth. However, previous laboratory work indicates that such changes are unimportant in terms of the viscosity of the ice. Observations of the basal boundary or sliding surface indicate that there are areas of both “hard” bedrock and “soft” deformable till, which should cause spacial and temporal gradients in sliding rate.


Journal of Glaciology | 1998

Mapping subglacial surfaces of temperate valley glaciers by two-pass migration of a radio-echo sounding survey

Brian C. Welch; W. T. Pfeffer; Joel T. Harper; Neil F. Humphrey

High-resolution maps of the glacier bed are developed through a pseudo-three-dimensional migration of dense array of radio-echo sounding profiles. Resolution of three-dimensional maps of subglacial surfaces is determined by the radio-echo sounding wavelength, data spacing in the field, and migration. Based on synthetic radio-echo sounding profile experiments, the maximum resolution of the final map cannot exceed one half-wavelength. A methodology of field and processing techniques is outlined to develop a maximum-resolution map of the glacier bed. The field and processing techniques are used to develop a map of the glacier bed below part of Worthington Glacier, a temperate valley glacier in south-central Alaska. The field techniques and the processing steps used on the glacier result in a map of 20 m × 20 m resolution.

Collaboration


Dive into the Joel T. Harper's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Joel Brown

Boise State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

T. J. Fudge

University of Washington

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge